
PWN - Glibc Heap
Basics

Pedro Bernardo
@bl4ck_pwn

Heap: Overview

● Pool of memory used for dynamic allocation at runtime

○ malloc - grabs memory from the heap

○ free - releases memory on the heap

Heap: Overview

Heap: Chunks

● Consists of Heap Chunks, and there are different types:
○ Allocated Chunk
○ Free Chunk
○ Top Chunk
○ Last Remainder Chunk

Heap: Chunks

Allocated Chunk Free Chunk

Source: https://www.sourceware.org/glibc/wiki/MallocInternals

Heap: Top Chunk

● Used to service user requests when there are NO FREE
CHUNKS

● Features:
● If top_chunk->size > requested->size, it is split in two

○ User chunk (requested size)
○ Remainder Chunk (of remaining size)

● Else the top chunk is extended using sbrk or mmap

Heap: Coalescing

● Two chunks which are free can’t be adjacent
○ Combined into a single free chunk

● Why?
○ Eliminates fragmentation
○ Makes free slower

Arenas and Heaps

● Main arena - Initial heap’s arena
○ We are usually interested in this one

● More than one region can be managed by malloc
○ Why? Multi-threading
○ These regions are called Arenas

Main Arena: Bins

● Bins:
○ Free-list structures
○ Hold free chunks

● Different types, based on chunk size and history:
○ Fast bin (not coalesced)
○ Small bin
○ Large bin
○ Unsorted bin

Main Arena: Bins

Main Arena: Bins

Bins Linked List Type Chunk Size
Range

Coalescing

Fast Singly-linked 16 – 80 bytes ❌
Small Doubly-linked 80 – 512 bytes ✅
Large Doubly-linked 512+ bytes ✅

Unsorted Doubly-linked Small and Large
chunks

❌

Unsorted Bins

● When a small or large chunk gets freed, it is added to the
Unsorted Bin

● Why?
○ Helps speed up memory allocation

Large Chunks: Special Cookies

Large chunks have extra fields so they can best fit user requests:

● Size - to keep an ordered list (descending order)
● Allows malloc to quickly search for the first big enough chunk

Thread Local Cache (tcache)

● Introduced in glibc 2.26 to improve heap performance
● Structure stored on the heap
● Similar to Fast Bins

Thread Local Cache: tcache_put

static __always_inline void

tcache_put (mchunkptr chunk, size_t tc_idx)

{

 tcache_entry *e = (tcache_entry *) chunk2mem (chunk);

 /* Mark this chunk as "in the tcache" so the test in _int_free will

 detect a double free. */

 e->key = tcache;

 e->next = tcache->entries[tc_idx];

 tcache->entries[tc_idx] = e;

 ++(tcache->counts[tc_idx]);

}

Thread Local Cache: tcache_get

static __always_inline void *

tcache_get (size_t tc_idx)

{

 tcache_entry *e = tcache->entries[tc_idx];

 tcache->entries[tc_idx] = e->next;

 --(tcache->counts[tc_idx]);

 e->key = NULL;

 return (void *) e;

}

Heap Vulnerabilities

Techniques:

● Unsafe-unlink (kind of patched?)
● Fastbin and Tcache dup/poison
● Poison null-byte
● Overlapping chunks
● House of <insert random word>

○ House of Force
○ House of Heinerjar
○ House of Spirit

3 main categories:

● Double-free
● Use-After-Free
● Overflow

Source: https://github.com/shellphish/how2heap

Resources

● Malloc security checks -
https://heap-exploitation.dhavalkapil.com/diving_into_glibc_heap/security_checks

● Malloc internals - https://www.sourceware.org/glibc/wiki/MallocInternals
● How2heap - https://github.com/shellphish/how2heap
● Glibc source code - https://elixir.bootlin.com/glibc/latest/source
● Temple of PWN -

https://www.youtube.com/playlist?list=PLiCcguURxSpbD9M0ha-Mvs-vLYt-VKlWt
● LiveOverflow -

https://www.youtube.com/playlist?list=PLhixgUqwRTjxglIswKp9mpkfPNfHkzyeN
● GEF gdb extension - https://github.com/hugsy/gef

https://heap-exploitation.dhavalkapil.com/diving_into_glibc_heap/security_checks
https://www.sourceware.org/glibc/wiki/MallocInternals
https://github.com/shellphish/how2heap
https://elixir.bootlin.com/glibc/latest/source
https://www.youtube.com/playlist?list=PLiCcguURxSpbD9M0ha-Mvs-vLYt-VKlWt
https://www.youtube.com/playlist?list=PLhixgUqwRTjxglIswKp9mpkfPNfHkzyeN
https://github.com/hugsy/gef

