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Resumo

Os ataques Spectre exploram uma das técnicas mais eficazes de otimização dos processadores (CPU):

a execução especulativa. Instruções executadas especulativamente podem deixar vestı́gios nas estru-

turas da microarquitetura. Estes vestı́gios podem ser posteriormente recuperados, usando side-channels,

permitindo a atacantes ler memória confidencial. Como mitigação a ataques Spectre, os fabricantes de

CPUs propõem uso de instruções de serialização que inativam a execução especulativa para um de-

terminado segmento de código. No entanto, para aplicar esta técnica oferecendo simultaneamente

um equilı́brio entre segurança e performance, excertos de código vulnerável, denominados de Spectre

gadgets, têm de ser localizados.

Nesta tese, contribuı́mos para o estado-da-arte da deteção de Spectre gadgets, implementando a

ferramenta SpecTacle. Esta ferramenta extrai caminhos de execução potencialmente vulneráveis aos

quais aplica taint analysis estática, o que permite a deteção de gadgets produzindo um baixo número

de falsos negativos, sem sacrificar os tempos de execução. Adicionalmente, estes ”potenciais” gadgets

são validados através de execução simbólica. Por fim, avaliamos a eficácia do SpecTacle através de

litmus tests e aplicamos a ferramenta, com sucesso, a um caso real.

Adaptámos também a nossa ferramenta para suportar a deteção de gadgets que exfiltram informação

através de um side-channel baseado na unidade AVX2, usados em ataques NetSpectre, algo que não é

suportado por nenhuma outra ferramenta. Para finalizar, propomos ainda uma abordagem que permite

detetar, de forma estática, Spectre gadgets em código compilado JIT, algo que até agora era apenas

feito de forma dinâmica, e validamos esta abordagem através de uma prova de conceito num programa

Java.

Palavras-chave: execução especulativa, side-channel, análise de programas, gadgets Spec-

tre
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Abstract

Spectre attacks exploit one of the most effective CPU optimization techniques: speculative execution.

Instructions executed speculatively can leave traces in microarchitectural structures that attackers can

later recover using side-channels, enabling attackers to read arbitrary data. The adoption of speculative

execution is widespread across today’s CPU architectures, which means billions of devices are suscep-

tible to Spectre attacks. As a result, CPU manufacturers have suggested using serializing instructions

that effectively disable speculative execution for a given code segment as mitigation. However, to apply

this technique while providing a good balance between security and performance, these vulnerable code

snippets, called Spectre gadgets, must be first located.

In this thesis, we contribute to the state-of-the-art in Spectre gadget detection. We implement Spec-

Tacle, a tool that extracts potentially vulnerable control flow paths and performs static taint analysis to

detect gadgets in such paths while producing a low number of false negatives without sacrificing exe-

cution time. Additionally, these potential gadgets are validated through symbolic execution. Finally, we

show SpecTacle’s efficacy through litmus tests and successfully apply it to a real-world example.

In addition to the detection of Spectre-PHT gadgets, we adapt our tool to support the detection of

gadgets that leak data through an AVX-based side-channel, not supported by any other state-of-the-art

tool. These gadgets are used by NetSpectre, a Spectre variant that enables remote Spectre attacks.

Finally, we propose an approach to statically detecting Spectre gadgets in JIT-compiled code, which until

now has only been done dynamically, and validate this approach through a proof-of-concept.

Keywords: speculative execution, side-channel attacks, program analysis, Spectre gadgets
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Chapter 1

Introduction

1.1 Motivation

Gordon Earle Moore observed in 1965 that the number of transistors in integrated circuits doubles every

two years and predicted this would continue in the future. This effect was labeled Moore’s Law and held

throughout the past decades. However, recent developments have been challenging this prediction, as

stated by Carl Anderson in 2009 [1]. Central Processing Unit (CPU) clock frequencies and transistor

counts are stabilizing due to physical constraints like overheating. Increasing performance-per-watt val-

ues has also become a priority in recent years partly due to climate and energy consumption issues,

paired with the continuous quest for performance increases. These factors contributed to the develop-

ment of alternate ways of increasing CPU performance by manufacturers, which come in the form of

both architectural and microarchitectural optimizations.

The introduction of data and instruction caches is responsible for significant performance increases in

CPUs by bridging the gap between memory access times and CPU performance [2]. Optimizations such

as out-of-order execution allow for instruction-level parallelism by enabling different stages of the process

of executing an instruction to be performed in parallel by scheduling these stages in a pipeline [2]. This

scheduling increases the number of instructions executed in a CPU clock cycle, directly increasing CPU

performance. However, in some situations, the CPU cannot perform this scheduling until a specific in-

struction stage is resolved, which causes the pipeline to stall temporarily. One of these situations, called

a control hazard, can occur when conditional branching instructions are executed. Conditional branches

lead execution to different code locations, depending on a given condition. The calculation of this con-

dition can involve memory accesses, which can be impossible to resolve when the CPU adds a new

instruction to the pipeline. Speculative execution enables the CPU to guess where execution will con-

tinue based on a history of previous branching instructions kept by microarchitectural structures. In the

worst case, the CPU makes an incorrect guess, which is called a branch misprediction. After a branch

misprediction is recognized, the CPU discards the speculatively executed instructions, restores the CPU

state altered by these instructions, and resumes execution in the correct path. However, not all state is

restored. Cache entries, for example, remain unaltered. Instructions that modify microarchitectural state

1



that is not subsequently restored are called transient instructions.

Today’s CPU architectures widely adopt speculative execution. These architectures include those

developed by the leading CPU manufacturers, such as AMD, ARM, and Intel. However, in 2018 transient

execution attacks were introduced: Spectre, Meltdown, Foreshadow, and Foreshadow NG [3–6]. These

attacks exploit transient execution to break data isolation boundaries and leak sensitive information.

Since transient instructions are a consequence of speculative execution, and speculative execution is

employed in the majority of today’s devices, this means that billions of devices are vulnerable to transient

execution attacks [7].

Spectre [3] attacks use specific instruction sequences called Spectre gadgets to exploit branch pre-

diction mechanisms causing the execution of transient instructions that leak arbitrary data through side-

channels, most commonly cache-based side-channels. This data can then be retrieved by attackers

through cache timing attacks like Flush+Reload [8] or Prime+Probe [9]. Several Spectre variants have

been introduced. Spectre-PHT (or Spectre V1) exploits the Pattern History Table to cause branch mis-

predictions. Other variants exploit different structures like the Branch Target Buffer (Spectre-BTB or V2

[3]), the Return Stack Buffer (Spectre-RSB or V3 [3, 10]), or memory disambiguation techniques like

Store-To-Load Forwarding (Spectre-STL or V4 [3, 11]).

Mitigations for Spectre have been proposed, both at hardware and software levels. Disabling spec-

ulative execution seems to be the easiest and most effective mitigation, but this comes at the cost of

significant performance decreases. CPU manufacturers such as Intel have also proposed mitigations

consisting of micro-code updates that make it harder for attackers to influence internal CPU structures

or that reduce the attack range of Spectre attacks [12] by restricting the memory that can be accessed

during speculative execution. Ultimately, these countermeasures do not eliminate speculative execution

attacks. InvisiSpec [13] and SafeSpec [14] propose the addition of internal CPU structures that are

specific to speculative execution and that are invisible to attackers, which would mitigate all speculative

execution attacks. However, these solutions are expensive, partly due to the extra hardware require-

ment, and have not yet been applied in the real world. As a result, hardware-level Spectre mitigations

are still being developed.

Mitigations at the software level, like the insertion of serializing instructions, like memory load fences

(lfence), cause performance losses but are more straightforward to implement than hardware mitiga-

tions. However, to correctly apply these mitigations, we must first find the Spectre gadgets present in

programs since adding these instructions near every branching instruction would induce significant per-

formance penalties and is practically equivalent to disabling speculative execution. For these reasons,

Spectre gadget detection is currently a very prominent research topic.

Many approaches have already been explored recently [15–20], each with its advantages and dis-

advantages. These approaches range from dynamic analysis techniques like fuzzing or the use of

hardware performance counters, to static analysis techniques like pattern matching and taint tracking.

Most research argues that a combination of static and dynamic analysis is necessary to achieve the de-

sired balance between efficacy and performance. However, a complete end-to-end approach combining

these types of analysis has not yet been developed.
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Research in Spectre gadget detection has produced tools that either monitor a program’s execution

during runtime (Speculator [21], Dynamic Process Isolation [22]), analyze native executable files (Spec-

Fuzz [16], SpecTaint [23], oo7 [20], Binsec/Haunted [18], etc.), or analyze assembly code [19]. However,

Spectre gadget detection in interpreted or JIT-compiled code has not been explored enough. Addition-

ally, even though cache-based Spectre gadgets are the most common, other possible side-channels,

like port contention [24] or delays in the AVX unit [25] can be exploited in Spectre gadgets. Research in

the detection of Spectre gadgets that encode confidential data through these alternative side-channels

is also lacking.

1.2 Contributions

Our main goal with this work is to make progress towards an end-to-end solution for automatic Spectre

gadget detection. For that purpose, we propose SpecTacle, a static analysis tool for detecting Spectre-

PHT gadgets. SpecTacle has three main modules:

• An Explorer module that recovers execution paths that may contain Spectre gadgets.

• An Executor module that simulates those paths statically and propagates taint information accord-

ing to a given taint policy, and that supports arbitrary analyses that reason about the Executor’s

state, including taint values.

• Validator module based on symbolic execution to discard false positives flagged by the previous

static analysis, increasing precision.

Since our work is focused mainly on the detection of Spectre-PHT gadgets, we concentrate our efforts

on the Executor module and in developing an efficient static analysis module that produces the lowest

amount of false negatives without sacrificing precision and computation resources.

We adapt SpecTacle to be able to detect NetSpectre leak gadgets that use an AVX-based side-

channel [25], which, to the best of our knowledge, is not supported by any other state-of-the-art tool.

Finally, we propose a static approach to detecting Spectre gadgets in JIT-compiled code, which

has only been done dynamically to the best of our knowledge. Additionally, we prove the efficacy of this

approach through a proof-of-concept that successfully detects a Spectre-PHT gadget in a Java program.

1.3 Thesis Outline

In Chapter 2 of this thesis, we provide an overview of the theoretical background behind this work. This

background includes the necessary concepts of computer architecture, transient execution attacks, and

program analysis techniques. Chapter 3 discusses related work, i.e., other state-of-the-art tools, their

approach to Spectre gadget detection, and their corresponding pros and cons. Chapter 4 explores the

implementation of SpecTacle in detail, its architecture and analysis techniques. Chapter 5 discusses the
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experimental results and how SpecTacle fairs against other state-of-the-art tools. Finally, in Chapter 6 we

discuss our findings and future work that can help improve our results and advance the state-of-the-art.
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Chapter 2

Background

In this chapter, we discuss the background required for this thesis.

In Section 2.1 we introduce the concept of out-of-order execution. Section 2.2 explains the basics

of branch predictors and why they help greatly increase CPU performance. Section 2.2 provides an

overview of caches and cache attacks that allow attackers to leak cache data through timing attacks.

In Section 2.3 we briefly introduce the concept of speculative execution. Sections 2.5 and 2.6 provide

overviews of Spectre [3], Meltdown [4] and Microarchitectural Data Sampling attacks, their variations,

and how they exploit speculative execution. Section 2.7 provides an overview of the main program

analysis techniques used in state of the art.

2.1 Out-of-Order Execution

Modern CPUs execute instructions in stages in order to implement instruction-level parallelism. These

stages belong to a pipeline whose purpose is to allow for different stages of various instructions to be ex-

ecuted simultaneously, saving overall execution time [26]. Examples of these stages are: fetch, decode,

execute and, memory access.

Instruction pipelining assumes that each instruction completes before the next one begins, which is

not always accurate. Situations where this assumption does not hold, are called hazards [26].

There can be structural, control and data hazards [26].

• Structural hazards occur when multiple instructions in the pipeline require the same resource.

• Control hazards (or branch hazards) occur when the control flow is modified. If the guard of a

conditional branch is not resolved, the CPU does not know which instructions to execute next, so

a control hazard occurs.
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• Data hazards occur when an instruction in the pipeline depends on the result of a previous instruc-

tion. There are three types of data dependencies that can cause data hazards: read-after-write,

write-after-write and write-after-read.

These hazards, in particular control hazards, can lead to CPU stalls which significantly reduce per-

formance. So that other instructions do not have to wait for hazards to be resolved, independent instruc-

tions, i.e., instructions that do not lead to data or structural hazards, can be executed out-of-order to

maximize the instruction throughput of the pipeline. Instructions must be fetched and decoded in order,

to ensure that a program’s behavior is not affected by out-of-order execution. This order is kept by using

the reorder buffer (ROB), by saving both the intermediate results and operands of the instructions

that are executed out-of-order [26]. If an exception occurs, it is trivial to refer to the reorder buffer to

ignore all instructions executed after the instruction that caused the exception. Otherwise, all execution

results are committed in order [26].

Although instructions can be discarded, the microarchitectural state, i.e., the cache, is not reverted.

Instructions that are not committed but that leave microarchitectural side-effects are called transient

instructions [4].

2.2 Branch Prediction

Control hazards can have a significant negative impact on performance by causing the pipeline to stall

[26]. To ensure maximum pipeline throughput, the CPU must fetch an instruction immediately after the

previous one was fetched [26]. Fetching the next instruction is a problem for branch instructions because

the CPU does not know what path execution will lead. When it comes to conditional branches, these

can follow two paths: taken or not taken, while indirect branches can have multiple targets that may only

be resolved at runtime. Branch predictors help mitigate this problem.

A branch predictor is a CPU unit that predicts the next instruction for a specific branch given the current

program counter. [2]. Branch prediction can be:

• Static, when it is performed at compile-time [2]. An example of static branch prediction is a branch

predictor that always predicts that a branch is taken. Loop unrolling [2] is also considered a static

branch prediction technique.

• Dynamic, when the prediction is performed at runtime.

2.2.1 Dynamic Branch Prediction

Dynamic branch predictors make use of internal buffers that are updated at runtime whenever a branch

is resolved. These structures include the Branch History Table (BHT) [2].
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Branch History Table

The BHT is an internal buffer, indexed by the lower bits of the address of the branch instruction, and it

contains information about the recent history for that branch, i.e., if the branch was taken or not taken in

the last executions. This information can be comprised of one or more bits.

On a one-bit BHT, the prediction changes whenever there is a misprediction. For example, the BHT

contains the value of 0 for a given branch, meaning that it will be predicted not taken. If there is a

misprediction in this branch, the BHT entry will be changed to 1 [2].

Two-bit branch predictors implement a more complex state machine. The two bits can be interpreted

as a counter that increments when a branch is taken and decrements when not taken. This counter can

go up to the value of three (or 11) or down to 0. Values of 0 and 1 (00 and 01 in binary) cause a not

taken prediction, while values of 2 and 3 (10 and 11 in binary) cause a taken prediction [2].

Branch Target Buffer (BTB)

Another internal structure of dynamic branch predictors to note is the BTB. The BTB is a cache that

holds branch destinations for a given branch [26]. A BTB can hold information such as a tag to identify

the given branch, branch target address, and even instruction bytes from the branch target address

[27]. The BTB is the first structure queried by the branch predictor. Upon an instruction is fetched from

memory, the BTB is queried. If that query results in a hit, then the information in the BTB is used to

predict the branch target [27].

Pattern History Table (PTH)

The PTH is used in two-level predictors, as the second level to the BHT, and maps each possible value

for a branch in the BHT to another 2-bit counter [28, 29]. The value of the BHT for a given branch is

used to index the PHT counter update. The PHT counters implement the same state machine as the

BHT counters. [28, 29]

Return Stack Buffer (RSB)

Return instructions are a specific indirect branch type, so there is significant performance to be gained

by predicting them. For this purpose, the RSB is used. The RSB holds the return addresses of the most

recent function calls. Thus, each time a function call is performed, the expected return address, i.e.,

the address of the instruction after the call, is added to the RSB and mapped to the given call for later

prediction [30].
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2.3 Speculative Execution

Speculative execution consists of identifying branch instructions after fetching them, predicting their

branch targets in order to avoid or reduce the performance overhead caused by a possible control

hazard, and then executing that path speculatively.

The branch predictor is used to predict the branch target. Execution then continues from that address,

executing the following instructions out-of-order until the branch is resolved. Intermediate values and

instruction order are kept in the Reorder Buffer. When the branch instruction is executed, the results of

instructions executed out-of-order are either committed to the corresponding registers or memory or are

discarded.

Only a certain number of instructions can be executed while in speculation, and the size of the

Reorder Buffer determines this number. To the number of instructions executed in speculation, we call

speculation window [3].

2.4 Cache

CPU caches are small but fast memory buffers between the CPU and the main memory (DRAM). It

exploits the principle of locality of reference [26] which consists of the fact that, for a given time frame,

CPUs tend to access memory in the same locations. When the CPU accesses a memory address,

that address is brought to the cache to speed up memory access times. Subsequent accesses to that

address will use the cached version, saving on memory access time.

2.4.1 Cache Mappings

The CPU needs to be able to know if a specific memory address is cached or not. There are several

ways in which the main memory (DRAM) can be mapped to the cache. Direct-mapped caches map

each DRAM address to a specific cache address. This mapping is usually simple and is often done as

follows: A % N, where % is the modulo operator, A is the DRAM address, and B is the number of cache

blocks [26]. This calculation can be performed efficiently if the number of cache blocks is a power of

two [26]. Direct mapping can lead to collisions because the cache is smaller than the DRAM by design.

The CPU must be able to distinguish between memory addresses that are mapped to the same cache

line. To allow this for distinction, the cache contains tags. Tags only need to contain the upper bits of an

address that are not used to index the cache [26].

There is another mapping scheme where addresses can be mapped to any block in the cache. This

scheme is called fully associative. For locating specific blocks in the cache, since these can be placed

anywhere in the cache, the entire cache must be searched [26]. For this search to be efficient, it needs

to be done in parallel, and for that, special hardware must be used, which increases hardware cost [26].

To combine the best of these two approaches, set associative caches were developed. These caches

can map each address to a limited number of cache locations. An �n-way set associative cache contains
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n positions where each address can be mapped [26]. These n positions belong to a set. Each DRAM

address is directly mapped to a set.

2.4.2 Hierarchy

CPUs can have multilevel caches, which consists of a memory hierarchy of cache levels [26]. Modern-

day CPUs have three cache levels (L1, L2, and L3) [31]. The L1 cache is often smaller but faster. Both

L1 and L2 have an instruction and a data cache for caching both data and code separately [31].

Typically, the L1 and L2 caches are distributed per-core, while the L3 cache is shared among all

cores [31, 32].

2.4.3 Replacement Policies

When inserting data in the cache, collisions might occur. Replacement policies were developed to

resolve cache collisions. A few notable examples of cache replacement policies are least-recently used

(LRU) and random. If all possible cache blocks where an addressed can be mapped to are full, the

random replacement policy chooses a random block to be replaced. While enforcing the LRU policy, the

possible cache location with the highest age field, i.e., the cache location last accessed at the longest

time, is chosen [26].

The goal of replacement policies is to keep the most needed data on the cache to avoid cache misses.

A cache miss happens when the CPU tries to access a memory location that is not in the cache. Alter-

natively, a cache hit occurs when the data is found in the cache.

2.4.4 Cache Attacks

The purpose of caches is to reduce memory access times. Cache hits are significantly faster than

cache misses. This difference can reach 200 CPU clock cycles as illustrated by fig. 2.1. Naturally, this

decrease in memory access times significantly increases CPU performance, but it also introduces a

prominent side-channel used in many microarchitectural attacks.

Flush+Reload and Evict+Reload

Flush+Reload [8] was first introduced by Yarom and Falkner [8]. It uses the clflush instruction, which

evicts a memory line from all cache levels [8]. This eviction serves as the setup for the side-channel.

Flush+Reload assumes that both victim and attacker can access the same memory addresses. The

attacker flushes a specific memory address, so it is not present in any cache level. If the victim accesses

that address, it will be cached. The attacker can then perform a memory address on this same address

and measure the access time, for example, with the rdtsc instruction [33]. Timing information like the

one in fig. 2.1 can be used by an attacker to determine if the access resulted in a cache hit or miss,

letting the attacker know if the victim accessed the given memory address (in case of a cache hit) or not

(in case of a cache miss).

9



Figure 2.1: Memory access times of cache hits and cache misses for the Intel i5 2540M CPU

Evict+Reload [34] was introduced by Gruss et al. [34] as an alternative to Flush+Reload [8] for situa-

tions where the clflush instruction is not available and there are no specific architectural interfaces for

evicting cache blocks. These situations include Instruction Set Architectures (ISA) that do not support

clflush such as the case of ARMv7 [35], or remote attacks such as NetSpectre [25] where the attacker

does not have access to the victim’s system directly. Evict+Reload is also used to mount attacks from

JavaScript where a clflush instruction is not provided [3].

Evict+Reload [34, 36] follows the same formula as Flush+Reload [8], but since there is no clflush

instruction, cache block eviction is performed by accessing memory addresses that are congruent to the

cache block being evicted for a given replacement policy. Eventually, after enough memory accesses

are performed, the cache block is evicted.

Prime+Probe

Prime+Probe [9, 37, 38], generalized by Osvik et al. [9] has the advantage of not requiring the measure-

ment of the victim’s execution time. An attacker first populates a cache set. This stage is called prime. If

the victim accesses data congruent to the data primed by the attacker during its execution, attacker data

will be evicted from that cache set to be replaced by the victim’s data. Afterward, the attacker can then

access that cache, measuring access time. This stage is called probe. According to the access times,

the attacker can conclude if the victim accessed that cache set.
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Flush+Flush

Flush+Flush [39] was first introduced by Gruss et al. [39]. Flush+Flush [39] exploits the timing difference

between flushing a cached and an uncached memory address. This timing difference can be exploited

in the same way Flush+Reload is, replacing the memory access for a clflush instruction.

2.5 Spectre Attacks

In their work from 2018, Kocher et al. [3] introduced a class of attacks called Spectre. Spectre attacks

exploit transient execution by tricking branch predictors into mispredicting branch targets that are then

executed speculatively.

Spectre attacks exploit the fact that, although the architectural state is restored after the CPU resolves

a control hazard, the microarchitectural state is not. One particular element of the microarchitectural

state that is not reverted is the cache. This work mainly focuses on Spectre attack variants that use the

cache as a microarchitectural covert-channel to retrieve leaked information. Cache attacks can be used

to extract information from the cache. Examples of these attacks are Flush+Reload [8], Evict+Reload

[34, 36] and Flush+Flush [39].

A Spectre attack has two main components: attacker-controlled branch mispredictions and a se-

quence of instructions that encode data in a covert channel.

Transient instructions can violate program semantics because they execute in a context that is not

architecturally possible. Due to this, they can, for example, access data that would be out of bounds in

a standard execution flow. Thus, if an attacker can combine instructions that encode data in a cover-

channel with instructions that perform out-of-bounds memory accesses by tricking the branch predictor

into executing these instructions in the wrong context, he can mount Spectre attack.

2.5.1 Spectre Variants

Variant 1: Spectre-PHT

Spectre-PHT attacks were first introduced by Kocher et al. [3]. These attacks cause branch mispre-

dictions by poisoning the Pattern History Table, which branch predictors refer to alongside the Branch

History Buffer (BHB) to predict control flow direction following conditional branches.

An attacker can train the branch predictor to choose the taken path on a specific conditional branch.

The attacker can then provide data that would cause the not taken path to be chosen architecturally,

but since the branch predictor is trained to predict the taken path, this path would be executed transiently

in the wrong context.
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Variant 2: Spectre-BTB

Also first introduced by Kocher et al. [3], Spectre-BTB exploits the Branch Target Buffer (BTB) in order

to influence the victim to execute an attacker-chosen gadget speculatively. The BTB is used to make

predictions about indirect branches. Since virtual addresses are stored in the BTB, an attacker can

mistrain the branch predictor to predict branching to the address of a gadget in the victim address space

by repeatedly performing indirect branches to that virtual address. When the victim process executes

that indirect branch, the branch predictor will lead execution to the target gadget address, which will

execute speculatively, potentially leaking confidential data to the cache.

Variant 3: Spectre-RSB

Spectre-RSB [40] [30] exploits the Return Stack Buffer (RSB) instead of the branch predictor. The RSB

is a microarchitectural buffer that stores the virtual return addresses of the most recent call instructions.

Returning is a type of branching, and so the CPU tries to predict the control flow of a return instruc-

tion before it is resolved, i.e., the return address is read from memory. To make these predictions, the

CPU pops the top of the RSB and uses it as its prediction.

Like other microarchitectural structures, the RSB is not shared between physical cores.

Predicting leads to speculative execution, and mispredictions are inevitable. This occurrence is most

common on protection domain switches, like switching from kernel to userspace. Also, since virtual

addresses are stored in the RSB, and the RSB is a per-core structure, other processes executing on the

same physical core can pollute this buffer. This means that an attacker can induce misspeculation on

return instructions, causing a transient path to be executed to leak data through a covert channel, like

the cache.

Variant 4: Spectre-STL

Spectre-STL, first introduced by Horn [11] exploits speculation in the store-to-load (STL) forwarding logic.

Speculation does not arise only from control flow predictions but also from predicting data dependencies.

A Store-to-Load dependency requires that all preceding stores that affect it must first be assured for

a load to be performed. This can be a source of delay in the pipeline, so modern CPUs use a memory

disambiguator to predict which loads do not need to wait on stores to be performed. A mispredicted load

could then read data from the cache before the preceding store is executed and transiently perform logic

with this stale value, encoding it in a covert channel that an attacker could later recover.
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2.5.2 Spectre PHT

Our work focuses on Spectre-PHT. In this Spectre variant, the attacker’s goal is to mistrain a bounds

check condition on a conditional branch to perform an out-of-bounds memory access in a transient path.

Using listing 2.1 as a reference (from [41], an attacker could mistrain the conditional branch in line 1

by repeatedly performing the conditional branch with in-bounds values, i.e., with x less than array1 size

which will train the branch predictor to predict the taken branch. Eventually, the attacker provides an out-

of-bounds value for x which would cause the not taken branch to be executed. However, since the

branch predictor is trained to predict the taken branch, this branch will be executed transiently with x >=

array1 size which will cause an out-of-bounds memory access on array1.

1 if (x < array1_size)

2 temp &= array2[array1[x] * 512];

Listing 2.1: Spectre-PHT gadget

Since not all conditional branches lead to speculative execution, the attacker must create the nec-

essary conditions for speculative execution to occur. For this to happen, an attacker can, for example,

evict array1 size from the cache, causing a cache miss on the conditional branch, which will cause a

control hazard, leading to speculative execution.

Even though an out-of-bounds memory can occur, it does not necessarily follow that data is leaked.

For an attacker to leak data, this data must be encoded in a covert channel that the attacker can access.

We can see this data encoding in line 2 of listing 2.1. The out of bounds access occurs in array1[x].

In fig. 2.2 we can see how data can be leaked by an attacker using Spectre-PHT:

1. The branch predictor is mistrained to predict branch taken by being given values of x that are

less than the value of array1 size. Eventually, the attacker provides an out-of-bounds value for

x, which will cause array1[x] to be executed transiently, retrieving a byte from out-of-bounds

memory.

2. For the sake of clarity, let us assume the data at array1[x] corresponds to the alphanumeric

character L. This leaked data is then used to access the lookup array, array2.

3. The access to array2, will encode the leaked data in the cache. The attacker can now scan

through all entries in array2, using a cache attack like Flush+Reload [8]. The array index that

registers as a cache hit was the one accessed by the victim, and so the attacker retrieves the

value of array1[x].

This work focuses on identifying Spectre-PHT gadgets in binaries. A Spectre-PHT gadget is a se-

quence of instructions executed in a transient path that can perform out-of-bounds memory accesses

and encode the data accessed into a cache side-channel.
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Figure 2.2: Example of encoding data into the cache using Spectre-PHT.

Examples of different Spectre-PHT gadget variants are provided by Kocher [41]. These gadget

variants have been used as a litmus test for Spectre-PHT gadget detection tools.

2.5.3 NetSpectre

In 2018, Schwarz et al. [25] introduced NetSpectre, a fully remote Spectre-PHT attack. Alongisde a

cache-based remote Spectre-PHT attack, Schwarz et al. [25] also introduce an AVX-based [42] side

channel with increased performance in relation to the cache-based side channel.

Advanced Vector Instructions (AVX) is an extension to the Intel x86 architecture that provides instruc-

tions that perform operations on vectors [42, 43]. These instructions can operate on 128-bit registers

and are commonly used in cryptographic algorithms [43] and for floating-point operations [42]. AVX2

was introduced to extend AVX and provide 256-bit operation support [42].

NetSpectre’s [25] two main pillars are leak gadgets and transmit gadgets. NetSpectre [25] attacks

perform mistraining in-place. Valid and invalid network packets are passed to the victim to train the

branch predictor to mispredict branch targets leading to transient execution. [25].

To leak data, the attacker causes the victim to execute two gadgets, a leak and a transmit gadget:
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1 if (x < bitstream_length)

2 if(bitstream[x])

3 flag = true

Figure 2.3: NetSpectre leak gadget. Leaks 1 bit from a bitstream based a user-provided value x [25].

• Leak gadgets speculatively access data that can be out-of-bounds and change microarchitectural

state based on that data. Listing 2.3 shows an example of a leak gadget [25].

• Transmit gadgets perform arbitrary operations with the microarchitectural data that was tempered

by the leak gadget. The runtime of this operation must be affected by the microarchitectural state

being used. [25]

The gadget in fig. 2.3 can be exploited to leak data remotely as follows:

1. Send several packets where the value of x is in-bounds to mistrain the branch predictor. The

branch predictor will then predict that the branch should be taken.

2. Send a packet with a value of x that is out-of-bounds, causing the taken path to be executed

speculatively. This leads to the operation in line three being executed transiently depending on the

value of bitstream[x], causing flag to be brought to the cache or not.

3. Use a transmit gadget which consists of an operation whose runtime depends on the value of flag

and measure that time to leak the value of bitstream[x].

The procedure above can be followed repeatedly and with arbitrary values of x, leading to arbitrary

memory leakage. As the differences in response time are in the scale of nanoseconds, to leak an

arbitrary bit with a significant confidence level, these differences must be averaged over multiple mea-

surements. [25]. Since these response timing differences are measured of the network and the attacker

does not have access to the victim’s cache, it is not possible to use the same cache attacks as in local

Spectre attack variants, i.e., Flush+Reload [8], or Prime+Probe [9], a remote variant of Evict+Reload

[25, 34, 36] is used instead.

AVX-based Covert Channel

Schwarz et al. [25] introduce a novel covert channel based on an AVX2-based side channel. AVX2

instructions perform operations on 256-bit registers. This side-channel exploits the fact that the CPU

can power down the upper part of the AVX2 unit. [25, 44] The AVX2 unit is shut down to save power. As

soon as an AVX2 instruction is executed, the unit is powered back up. When powering up, the upper half

of the AVX2 unit is not available right away. Instead, there is a warm-up period where the AVX2 unit can

still perform 256-bit operations but uses the lower half (128-bits) only, which causes slower computation

times [45]. After the warm-up period, the AVX2 unit is again fully usable. The upper half of the AVX2

unit is shut down after approximately 1ms of inactivity [25, 45].

The timing difference between AVX2 instructions when the AVX2 unit is warmed-up and when it is

powered down is more than twice the difference between cache hits and misses [25] which makes this
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1 if (x < bitstream_length)

2 if(bitstream[x])

3 _mm256_instruction ();

Figure 2.4: NetSpectre leak gadget using an AVX-based covert-channel to encode confidential data
[25].

side-channel better for remote usage than traditional cache side channels. Setting up the AVX2 unit for

the next leak gadget is also easier to perform than evicting data from the cache, as the attacker needs

to wait for the unit to power down [25]

To exploit this side channel, an attacker can use a leak gadget like the one in fig. 2.4, which, de-

pending on the result of the comparison in line 2 during speculative execution, executes or not an AVX2

instruction transiently. Schwarz et al. [25] showed that for AVX2 instructions, in particular the VPAND

instruction, there is no performance loss if the last AVX2 instruction was executed less than 0.5ms ago.

The transmit gadget then needs to perform an AVX2 instruction not longer than 0.5ms after the leak

gadget is executed [46] to leak the result of the comparison in line 2 of fig. 2.4.

2.5.4 Spectre Countermeasures

Several Spectre attack countermeasures have been proposed by Intel [12], in the form of Indirect Branch

Restricted Speculation (IBRS) which prevents Spectre attacks to access SGX [47] enclave memory. An-

other countermeasure introduced by intel is the Indirect Branch Predictor Barrier (IBPB) which prevents

instructions executed before this barrier to modify indirect branch prediction targets executed after the

barrier [12]. Intel also proposes that process isolation be used to make sure data cannot be leaked be-

tween processes. This approach was applied to web browsers by Google with Strict Site Isolation [48]

(SSI) which separates each website’s data in its own separate process. However, Agarwal et al. [49]

were able to exploit SSI implementation issues to leak data from different websites from JavaScript [49].

Other mitigations targeting Spectre-PHT and other variants, proposed by Intel, ARM and AMD in-

clude the insertion of serializing instructions like lfence to locally disable speculative execution. How-

ever, disabling speculative execution has a negative impact on program performance [41]. There have

been some proposed mechanisms for selectively inserting these serializing instructions in order to

achieve a good balance of security and performance [16, 20, 23], but ultimately this solution is not

optimal.

Hardware mitigations have the most potential to mitigate speculative execution attacks. However,

they usually involve architecture redesign and are expensive. SafeSpec [14] and InvisiSpec [13] were

hardware speculation attack countermeasures. Both SafeSpec and InvisiSpec proposes the creation of

a separate structures to keep track of microarchitectural state affected by transient instrutions that are

invisible to attackers, which removes the threat of microarchitectural side-channels during speculative

execution. These solutions have not been implemented in the real world due to their high cost.
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2.6 Meltdown Attacks

While Spectre attacks exploit branch mispredictions, Meltdown [4] attacks exploit transient instructions

that are executed following an exception. In affected microarchitectures, results from faulty instructions

can still be used in transient instructions before the faulty instruction is retired, and consequently, the

exception raised [4]. Following transient instructions can then encode this data in a covert channel by

bringing it to the cache. An attacker can then retrieve this data from the cache using a cache attack like

Flush+Reload [8]. This was the first Meltdown variant introduced and is known as Meltdown-US. Other

variants have since then been reported.

Foreshadow [5] is a Meltdown variant that can be used to leak data from SGX [47] enclaves [5] and

can be mounted from guest systems to leak hypervisor memory [6]. Leaking SGX enclave data is done

by exploiting the present bit in the page table to cause a page fault upon access, instead of SGX’s abort

page semantics [5, 47]. After the attacker caused a page fault on an SGX enclave page, data in the L1

cache can now be leaked the same way as in Meltdown-US.

2.7 Program Analysis

Program analysis is the process of analyzing programs. Program analysis can have diverse goals, such

as detecting where optimizations can be implemented and tested for correctness.

Detecting security vulnerabilities has been one of the main focuses of program analysis, and it has

helped to identify countless vulnerabilities over the years. However, program analysis has its limitations;

one of them is that detecting security vulnerabilities is often an undecidable problem. This limitation

means that automatic analysis tools usually suffer from producing false positives or false negatives. A

false positive occurs when a tool detects a security violation when there is none. A false negative occurs

when a tool deems a specific piece of software as secure and contains a security violation.

There are three main approaches to program analysis: dynamic, static, and hybrid analysis. These

refer to the timing of when program analysis is performed.

• Static analysis is performed before program execution and is usually faster because it does not

require the overhead of launching processes and executing the instructions being analysed. Static

analysis techniques include:

– Control-flow analysis

– Model checking

– Program verification

– Taint Analysis

Although faster, static analysis techniques do not have access to actual user input data. This often

results in an increased number of false positives.
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• Dynamic analysis is performed during program execution or after program execution by analyzing

program traces or other collected data. Dynamic analysis techniques include:

– Dynamic type checking

– Monitoring

– Binary instrumentation

– Testing

Opposite to static analysis, dynamic analysis has access to runtime information such as user

inputs and control flow paths. This helps increase precision. On the other hand, it is restricted to

only a subset of all possible executions. Decreasing the search space can lead to false negatives.

• Hybrid analysis, as the name implies, is a combination of static and dynamic analysis. Hybrid

analysis tools can use the output of static analysis as the input of dynamic analysis and vice versa.

An example of a hybrid analysis technique is symbolic execution.

In this work, we use a hybrid analysis approach by using the outputs of static analysis techniques as

inputs to symbolic (concolic) execution.

2.7.1 Taint Analysis

Taint Analysis is a type of program analysis that is usually static but can also be performed dynamically.

There are two main concepts of Taint Analysis: sources and sinks.

• Sources are sources of taint for program data. For example, user input functions are often con-

sidered as taint sources.

• A Sink is a point in a program where tainted data should not reach.

Taint analysis is often used to verify whether information can flow from user input to a sensitive func-

tion in a software-security context.

There is a vulnerability in C programs called format-string vulnerability. A format-string vulnerability

consists of the first argument of printf being controlled by the user. An attacker can leverage this

control to use format-string modifiers like %p or %s to leak program data. A format-string vulnerability

can even be leveraged to build a write-what-where primitive that an attacker can use to achieve arbitrary

code execution by using the %n option to write arbitrary data in program memory.

We can use taint analysis to analyze C source code and look for an information flow from a user input

function to a printf. Listing 2.2 shows an example of a C program containing a format-string vulnerability.

We can label all user input functions as sources and printf as a sink. In this example, gets would be a

source. After line 5 is executed, s is now tainted. Line 6 will propagate the taint to the t variable, since
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now t points to s which contains tainted data. Finally, line 8 executes, which translates to a sink function

being executed with a tainted argument which constitutes a security violation.

1 int main(){

2 char s[20];

3 char* t;

4

5 gets(s); // gets is a source -> s is tainted

6 t = s; // t is now tainted

7

8 printf(t); // printf is a target -> vulnerable

9

10 return 0;

11 }

Listing 2.2: Format-string vulnerability

A tainted variable can be sanitized, which means it is no longer tainted. Take a function sanitize

that removes all format-string modifiers from a string, like %p and %n. Calling this function on a tainted

format string before it is given to the printf as an argument would make it impossible for an attacker to

exploit its control. Listing 2.3 illustrates this example.

1 void sanitize(char* s); // removes format -string modifiers from s

2

3 int main(){

4 char s[20];

5

6 gets(s); // gets is a source -> s is tainted

7 sanitize(s); // s is now sanitized

8

9 printf(s); // printf is a target -> not vulnerable

10

11 return 0;

12 }

Listing 2.3: Format-string vulnerability

Taint analysis can help detect Spectre-PHT gadgets by tracking whether user input can reach an

out-of-bounds check on a conditional branch. If it can, the conditional branch can be mistrained, and a

transient path can be executed.

2.7.2 Symbolic Execution

Symbolic execution [50] [51] uses symbolic values instead of concrete input values to represent pro-

gram variables. These symbolic variables belong to the symbolic engine’s symbolic state. The other
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component of symbolic execution is the symbolic path constraints which is a formula that aggregates

the constraints imposed on the variables by conditional statements in a given path. During execution,

both the path constraint and the symbolic variables are updated. First, constraints are applied to sym-

bolic variables based on the program’s control flow and conditional statements. These constraints are

later solved using a constraint solver [52] to verify path feasibility, giving possible values for the symbolic

variables that satisfy the path constraints. If the path constraint is not satisfiable, then the path is not

feasible.

Modern symbolic (concolic) execution performs symbolic execution dynamically. A program is run

concretely, keeping a concrete state and a symbolic state at the same time. A program is started

with some concrete input. As the program runs, symbolic constraints are added to those inputs when

control-flow-altering statements are encountered. These constraints are evaluated, and new inputs are

generated to guide execution to specific paths. In the end, the goal is to explore all possible paths,

achieving maximum code coverage.

2.7.3 Fuzzing

Fuzzing [53] is a dynamic program analysis technique. It consists of testing a program by generating

inputs in order to achieve maximum code coverage. When a program crashes, the fuzzer reports a bug.

Additional integrity checks can be added to the program to help in detecting bugs [16, 53].

A fuzzer generates inputs, either randomly, based on an input grammar [53] or by mutating a given

input corpus, which is a collection of program inputs. It then runs the program with those generated

inputs and reports crashes or integrity check violations. In order to obtain maximum code coverage,

fuzzers like American Fuzzy Lop (AFL) [54] use mutational fuzzing, where inputs are generated by

mutating existing inputs. Thus, these fuzzers are referred to as mutational fuzzers.

2.7.4 Intermediate Representations

Intermediate representations [55] (IR) are program representations that are designed to abstract a pro-

gram’s logic, facilitating processing endeavors such as program translation or code optimizations [56].

These representations are commonly used by compilers like LLVM [57] and GCC [58] to provide cross-

platform code compilation. Program analysis tools commonly use intermediate representations because

they facilitate semantic analysis by equalizing syntax differences across platforms and programming lan-

guages. Abstract Syntax Trees (AST) and Intermediate Languages (IL) are two examples of IRs [55].

2.7.5 Just-in-time compilation

Just-in-time (JIT) compilation, or dynamic compilation, refers to the process of compiling code to be

executed at runtime. JIT compilation serves as a time, and performance optimization [59]. Thus, JIT

compilation is used to combine both benefits of static compilation and interpretation [59]. While stati-

cally compiled programs offer greater performance because they can be compiled to run machine-code
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directly, interpreted programs are typically smaller but require an interpreter. However, interpreters also

have access to information that is unknown before runtime, such as input parameters and control-flow

[59]. Thus, JIT-compilation is typically used in interpreters, or virtual machines [60] to obtain the perfor-

mance benefits of static compiled programs without sacrificing access to information about input param-

eters, control flow, and execution environment [59]. Instead, this information is leveraged to generate

optimized machine code at runtime that is then executed for significant performance improvements.
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Chapter 3

Related Work

This chapter will provide an overview of other Spectre gadget detection tools, what they provide, and

their lack. In section 3.1 we will look at SpecFuzz, a dynamic analysis tool that uses fuzzing to identify

out-of-bounds memory accesses in transient paths. Section 3.2 will provide an overview of SpecTaint,

a recent dynamic taint analysis tool. FastSpec, a tool that uses neural networks to identify Spectre

gadgets, will be explored in section 3.3. In section 3.4 we discuss oo7, a tool that uses control flow

extraction, taint analysis and address analysis to detect Spectre gadgets. Pitchfork, KLEESpectre,

Spectector and Binsec/Haunted will be explored in sections 3.7 and 3.8, respectively. These tools

make use of symbolic execution to identify Spectre gadgets. Finally, we will provide an overview of

how hardware performance counters (HPC) can be used to detect side-channels and Spectre attacks at

runtime in Sections 3.9 and 3.10.

3.1 SpecFuzz

SpecFuzz [16] by Oleksenko et al. [16] is a tool that claims to enable dynamic testing for speculative

execution vulnerabilities. It instruments a program to add speculative execution logic at compile time

that simulates speculative execution behavior. Then, it fuzzes [53] this instrumented version of the

program, trying to achieve maximum code coverage in order to detect out-of-bounds memory accesses

in speculative execution.

SpecFuzz [16] uses a modified version of the clang [61] compiler (clang-sf) that instruments condi-

tional branches, adding speculative execution logic at compile time to simulate speculative execution.

Fig. 3.1 shows an example SpecFuzz’s instrumentation. SpecFuzz then makes use of Google’s Hong-

gfuzz [62], a mutational feedback-driven fuzzer to fuzz the generated binaries to find Spectre gadgets.

SpecFuzz leverages AddressSanitizer [63] to check for out-of-bounds accesses. This check is the

only one that SpecFuzz performs to increase fuzzing throughput, considering all out-of-bounds memory

accesses performed in simulated speculative paths as potential Spectre gadgets. Unfortunately, this is

a flawed model that is prone to false positives.

Another shortcoming of SpecFuzz is that runtime faults during simulated speculative execution halt
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1 if x < array_size:

2 result = array[x]

3 ...

4
5
6
7
8
9 ...

Listing 3.1: Native conditional branch

1 checkpoint ()

2 if x >= array_size:

3 goto skip_branch

4 if x < array_size:

5 skip_branch:

6 result = array[x]

7 ...

8 if terminate_simulation ():

9 rollback ()

Listing 3.2: Instrumented conditional branch

Figure 3.1: Side-by-side of native code and code produced by the SpecFuzz custom compiler [16]

execution and trigger a rollback. Unfortunately, this is not accurate since not all CPUs behave in this

manner, as shown in the Meltdown-type attacks [4, 7] which exploit the execution of transient instructions

that occur after an exception until the exception becomes architecturally visible, i.e., until the faulting

instruction is retired.

Finally, SpecFuzz relies on the inputs generated by Honggfuzz and the code coverage it can pro-

duce, meaning that whether a path is explored or not is probabilistic. Ultimately, this means that paths

that contain potential Spectre gadgets might not be explored by the fuzzer and thus, not detected. Fur-

thermore, even if one of these paths is executed by the fuzzer, it might not trigger an out-of-bounds

memory access, leading to Spectre gadget not being detected, i.e., a false negative.

3.2 SpecTaint

SpecTaint [23] extends a dynamic taint analysis platform (DECAF [64]) to instrument speculative execu-

tion logic at runtime to simulate speculative execution and then use a semantic-based gadget pattern to

identify Spectre gadgets.

The authors Qi et al. [23] claim to outperform other state-of-the-art tools both in precision and recall

while not drastically increasing runtime. Unfortunately, the tool’s source code has not yet been open-

sourced, so we could not verify these claims.

SpecTaint developed a taint pattern similar to the one of oo7 [20] that relies on program semantics

instead of syntax. This pattern is very similar to the one used by our work since SpecTaint was released

in early 2021, during the development of SpecTacle.

SpecTaint applies the taint pattern mentioned above to speculative paths in runtime, using a modified

version of the DECAF [64] binary analysis platform built on top of QEMU [65], a system emulator. This

modified version of DECAF adds speculative execution logic akin to that of SpecFuzz [16], i.e., the

state is saved before executing a conditional branch, the opposite path of the conditional branch is then

executed until it finishes or until the number of instructions in the Speculation window is reached, and

finally the saved state is restored. During the simulation of speculative execution, the taint is propagated,

and the taint pattern mentioned above is matched.
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This approach is subject to the inherent shortcomings of dynamic analysis. For example, program

path coverage may be less than 100%, meaning that not all potential Spectre gadgets are analyzed.

3.3 FastSpec

FastSpec [19] takes a unique approach to Spectre gadget detection. FastSpec claims to generate a

set of over 1 million Spectre-PHT gadgets and uses them to build a classifier based on BERT [66], a

novel Neural Embeddings technique. According to our research, this is the only attempt to use Natural

Language Processing to build a Spectre Gadget detection tool.

To generate novel Spectre-PHT gadgets, Tol et al. [19] uses mutational fuzzing and Generative Ad-

versarial Networks (GANs) [67] based tool. FastSpec’s input consists of an assembly file. The assembly

in the input file is then divided into tokens. A token is a space-separated string of symbols extracted from

the input assembly file. Tokens are then distributed across windows of a configurable size x. Token win-

dows overlap with consecutive windows by a fixed amount, in a sliding window fashion. Each window is

fed to the classifier, which outputs a confidence level that there is a Spectre-PHT gadget in that window.

The final output of FastSpec is a file that maps token windows to a confidence value between 0 and 1.

Since FastSpec ignores all labels in the assembly file, tokens corresponding to instructions from

different but contiguous functions in memory are grouped in token windows for classification, encoding

possible sequences of instructions that could not appear during program execution, which leads to false

positives.

Through our analysis of FastSpec’s training dataset [68], we found that some of the generated

Spectre-PHT do not constitute a valid Spectre-PHT gadget. Take fig. 3.2. We can see that the mem-

ory access performed in line 10 is not guarded by a bounds check. Then follows a conditional branch

which tests the contents of array1 instead of performing the bounds check on the index that is being

accessed. After the conditional branch, in line 17, a second memory access is performed where the

memory contents accessed before speculation are encoded in the cache. This does not constitute a

bounds-check bypass Spectre-PHT gadget because it is possible to use this code to leak out-of-bounds

data architecturally without the need for speculative execution.

The fact that code like the one in fig. 3.2 is used to train FastSpec’s classifier leads to false positives

by design.

FastSpec authors claim to verify every gadget generated to train FastSpec by providing only out-of-

bounds values to the gadgets and checking for leakage. Providing only out-of-bounds values makes it so

the branch predictor is not be mistrained and so no data is expected to be leaked. If it is, then the gadget

is discarded, because then it can be leaked architecturally. This verification algorithm clearly does not

produce the expected results since the gadget in fig. 3.2 was not discarded, because the conditional

branch does not directly depend on the provided index.
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1 .text

2 .file "17.c"

3 .globl victim_function # -- Begin function victim_function_v17

4 .p2align 4, 0x90

5 .type victim_function ,@function

6 victim_function: # @victim_function_v17

7 .cfi_startproc

8 # %bb.0:

9 leaq array1 (%rip), %rax

10 movzbl (%rdi ,%rax), %eax

11 cmpl %eax , array1_size (%rip)

12 jbe .LBB0_2

13 # %bb.1:

14 cmovaeq %rdx , %rcx

15 shlq $9 , %rax

16 leaq array2 (%rip), %rcx

17 movb (%rax ,%rcx), %al

18 orq %r13 , %r12

19 andb %al , temp(%rip)

20 .LBB0_2:

21 retq

22 .Lfunc_end0:

23 # .size victim_function_v17 , .Lfunc_end0 -victim_function_v17

24 .cfi_endproc

Figure 3.2: FastSpec training gadget [68].

3.4 oo7

Oo7 [20] uses taint analysis to detect Spectre gadgets. It does this by checking code against a semantic

taint pattern during a transient path, simulated by forced execution. This pattern requires the presence

of a Tainted Branch, a Read Secret and a Leak Secret stage.

Oo7 uses the Binary Analysis Platform (BAP) [69] which helps automate binary analysis. First, it lifts

instructions to an intermediate representation, Binary Instruction Language (BIL). BAP also handles taint

propagation. Then, the oo7 checks for the semantic taint pattern, flagging every match as a potential

Spectre gadget.

The main disadvantage of oo7 is that it is reported to have very high runtimes, limiting its real-world

usage. Because it performs static taint analysis, it is also prone to overtainting, which leads to false

positives. In the FastSpec [19] paper, it is also reported that oo7 fails to detect gadgets that use cmov,

xchg or set instructions, leading to false negatives.

3.5 Pitchfork

Pitchfork [70] is a tool introduced by Cauligi et al. [70] that uses symbolic execution to validate speculative

constant-time semantics, which they also define. Speculative constant-time is an extension of the

constant-time paradigm [71] that is used across modern cryptography to deal with timing side-channels,

by ensuring that computation time does not depend on confidential data. Speculative constant-time

extends this idea to speculative execution which enables for microarchitectural side-channels to be dis-
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covered. Pitchfork can check for speculative constant-time violations by modeling a three-stage machine

that supports out-of-order and speculative execution.

Pitchfork defines a set of semantic rules that map speculative constant-time properties to their ma-

chine model and check for violations to those semantic rules during symbolic execution. Ultimately,

Pitchfork suffers from the problems inherent to symbolic execution, such as path explosion that affect its

scalability to large codebases.

3.6 KLEESpectre

KLEESpectre [72] by Wang et al. [72] uses symbolic execution to detect Spectre gadgets by modeling

transient execution during symbolic execution. KLEESpectre models speculative execution symbolically

by forking execution into four paths at each conditional branch, two regular paths, and two transient

paths. The regular paths represent the regular branch taken or branch not taken paths, while the tran-

sient paths model transient execution switching the context of the previous paths, i.e., the branch taken

path is executed with program state that would normally lead to a branch not taken path, and vice versa.

KLEESpectre [72] provides symbolic cache modeling to detect cache side-channel leaks through

speculative execution paths. This platform is built on top of KLEE [73] and analyses LLVM [57] bytecode.

By forking execution into four paths at each conditional branch, KLEESpectre accentuates the problem of

path explosion already imposed by traditional symbolic execution approaches, leading to high execution

times.

3.7 SPECTECTOR

SPECTECTOR [17] leverages symbolic execution to detect Spectre gadgets in x86-64 programs. SPEC-

TECTOR verifies if programs follow Speculative non-interference (SNI). SNI states that two initial pro-

gram states can only be distinguished under speculative semantics if they can also be distinguished

under non-speculative semantics.Non-speculative semantics refer to standard program execution, while

speculative semantics follow the execution of mispredicted branches to simulate speculative execution.

SNI is a novel semantic property for detecting Spectre attacks and was introduced by Guarnieri et al.

[17]. SPECTECTOR uses symbolic execution to derive a representation of the memory accesses along

execution traces and branch targets along all possible paths of a program, which leads to an SMT (Z3

[74]) formula with the conditions that two initial program states produce the same access patterns in

speculative and non-speculative semantics. If this formula is satisfiable, then SNI is ensured, and the

program is secure. Otherwise, a program is considered to have memory leaks in speculative execution.

One drawback of this SPECTECTOR is that only the x64 Instruction Set Architecture is supported. A

second drawback is that x64 is not fully supported, although the Guarnieri et al. [17] claim that providing

this support is trivial. The fact that there are unsupported instructions makes it hard to evaluate SPEC-

TECTOR for real-world applications. Since unsupported instructions are skipped, this can also lead to
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false positives and false negatives when identifying Spectre-PHT gadgets.

3.8 Binsec/Haunted

Binsec/Haunted [18] expands on the works of Cauligi et al. [70] and Wang et al. [72]. It uses symbolic

execution to verify speculative constant-time but tackles a significant drawback of symbolic execution,

which is state explosion.

Binsec/Haunted applies Relational Symbolic Execution (RelSE) to verify speculative constant-time

semantics in symbolic execution. To model symbolic execution, Binsec/Haunted uses a modified version

of the explicit approach presented by KLEESpectre [72] that executes transient paths simultaneously

with regular paths to reduce the number of states generated. Daniel et al. [18] named this technique

Haunted RelSe. Haunted RelSE works by simplifying the symbolic expressions to evaluate speculative

constat-time with a simpler formula that explores fewer paths and adds fewer constraints. This opti-

mization makes it possible to explore a speculative path that encompasses both transient and regular

behavior, reducing the number of states needed during symbolic execution.

Haunted RelSE is implemented on top of an existing tool called Binsec [75], a binary-level analyzer,

resulting in a new tool called Binsec/Haunted.

3.9 Speculator

Speculator [21] takes a dynamic approach to detecting speculative execution attacks (SEAs). This

approach is applicable to other classes of SEAs besides Spectre [3, 11, 25], like Meltdown [4–6] variants

[21]. Speculator proposes using speculative execution markers, particularly instructions or sequences

of instructions that are detectable by performance counters even when executed in transient paths and

therefore discarded. These performance counters are architecture-specific.

Performance counters that make good markers are ones that track issued or executed instructions,

regardless if they were retired or not [21]. Counters that track only specific instructions like lea or div

instructions also make for good speculation markers [21]. Speculator takes as input a snippet of code to

be analyzed and appends speculative execution markers to it. If Speculator detects these markers, then

it concludes that the CPU executed the snippet.

Speculator can be used to detect transiently executed instructions and determine speculation window

sizes, among other microarchitectural properties. Although this tool is not used to search through code-

bases for possible Spectre gadgets, it has been demonstrably used to debug, evaluate and prototype

Spectre-type attacks [21].
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3.10 Dynamic Process Isolation

Recently, Schwarzl et al. [22] proposed a novel probabilistic Spectre attack detection technique based on

HPC that can be used during runtime and imposes a low overhead of around 2%t performance decrease

[22].

Two approaches to Spectre attack detection were proposed by Schwarzl et al. [22]. The first approach

uses Precise Event-Based Sampling to recover the number of mispredicted and retired branches. These

samples are then compared, using probabilistic methods, to the distribution of a template attack [22]. For

example, to generate a distribution of the mispredicted branches for Spectre-PHT attacks, a Spectre-

PHT gadget with in-place mistraining [3] was executed for a fixed amount of time, and the performance

counters were sampled. This template attack showed a misprediction distribution pattern that could be

easily distinguished from a benign program. This information can then be used to make probabilistic

claims about a given branch misprediction distribution to distinguish benign from malicious programs

[22].

The second approach is similar to an approach proposed by Gruss et al. [39] to detect cache at-

tacks. This approach, which proved to be faster, samples the number of retired branches but proceeds

to normalize it with the number of instruction translation lookaside buffer (iTLB) accesses. First, differ-

ent performance counters are collected, like the number of iTLB cache misses, the number of branch

instructions, and the number of cache misses. These counters are then normalized using the number of

iTLB accesses, which relates the counter values and the code size. Since Spectre attacks have a small

code footprint, it is possible to calculate a threshold that enables the distinction between malicious and

benign code [22].
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Chapter 4

Implementation

In this chapter, we will describe SpecTacle’s implementation choices and details. Section 4.1 will pro-

vide an overview of SpecTacle’s architecture, its main components, and how they interact with eachother.

Sections 4.2, 4.3, 4.4, 4.5 and 4.6 go into detail about each of SpecTacle’s components. Finally, Sec-

tion 4.7 discusses software optimizations implemented in SpecTacle, as well as others left as future

work.

4.1 High-level Overview

The core of the tool consists of three components: the Explorer, the Executor and the Validator.

Their interaction is represented in fig. 4.1. In this section we briefly describe these components leaving

a more detailed description of each component to the subsequent sections.

4.1.1 Pre-processing and Locating Conditional Branches

During the pre-processing stage, we provide the necessary support for the analysis of JIT-compiled

languages, as well as integration with FastSpec [68] output. This stage’s goal is to produce a binary that

can be further analyzed by the remaining components of SpecTacle.

Other Spectre-PHT gadget detection tools [16–19, 23] focus on finding gadgets in compiled bina-

ries. To the best of our knowledge, there are no tools for detecting Spectre-PHT gadgets that work with

JIT-compiled languages. To make a stride in this direction, we implement primitive support for detecting

Spectre-PHT gadgets in Java programs. This support is external to the core modules of SpecTacle and

can be extended, in future work, to support more JIT-compiled languages. This support is discussed in

Section 4.2.

Alongisde the support for Java programs, we also support integration with FastSpec [19]. Tol et al.

[19] claim that FastSpec is most effective when used as a first stage in Spectre gadget detection due

to its low execution times, and low false negative rates when looking at confidence levels of 0.48 or

below [19]. We provide support for FastSpec output in SpecTacle by using a slightly modified version
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Figure 4.1: High level schematic of SpecTacle’s execution flow

of FastSpec’s open-source code [68] that retrieves function labels alongside the confidence levels for

each token window. We then only analyze the functions that FastSpec considers vulnerable according

to a given confidence threshold. Detailed information about FastSpec’s output and how we achieve this

integratoin is provided in Section 4.2.

As illustrated in fig. 4.1, SpecTacle requires a binary as input. After this binary is provided, the

setup stage starts where the binary’s conditional branches are located and given to the Explorer. If

FastSpec’s output is provided, only the functions containing token windows with an assigned confidence

level above the given threshold are processed, otherwise all identified functions are analyzed. Details

on the conditional branch location is also be explored in Section 4.2.

32



4.1.2 Explorer

The Explorer is responsible for identifying the paths where potential gadgets are located. It returns all

possible execution paths starting at the beginning of the basic block a given conditional branch belongs

to and up to a configurable length. These are the execution paths where speculative execution can

potentially be triggered, and consequently, a Spectre[3] gadget can be found. From now on, they will be

referred to as traces. This module is also responsible for lifting code basic blocks present in the traces

to the Vex Intermediate Representation [76]. Implementation details are provided in Section 4.3.

4.1.3 Executor

The Executor is the main module of SpecTacle and is responsible for processing the traces retrieved by

the Explorer. It iterates through every Vex statement in the given traces and reflects its expected effect

on guest state on the Executor’s own state. Vex maps each instruction to one or more Vex statements,

and these statements can contain Vex expressions. Vex expressions represent operations without side

effects, such as arithmetic operations, constants, memory loads.

As illustrated in fig. 4.1, the Executor contains a Taint Policy property, as well as one or more

Analysis Hooks which are used to perform logic on the Vex statements being visited. It performs Taint

Analysis on the Vex statements by propagating taint information according to the given taint policy. The

Taint Policy property is detailed in Section 4.4.2. The Analysis Hooks can perform arbitrary analyses

using the Executor’s state, including the taint policy. The Analysis Hooks implemented in SpecTacle are

where Spectre gadget detection logic is implemented. This module is further describer and explored in

Section 4.4.

4.1.4 Validator

The Validator takes the potential gadgets identified by the Executor and uses Symbolic Execution to

check whether such a path is feasible given the constraints imposed by the conditional branch. Spectre

gadgets require transient instructions to be executed during speculative execution [3], which in turn

implies that a branch misprediction occurred. We apply symbolic constraints imposed by conditional

branches to program state in order to simulate such branch mispredictions and then check for path

feasibility given those constraints. We use angr’s [77] symbolic execution engine to follow the traces

that are flagged by the Analysis Hooks while gathering path constraints, as well as constraints to other

variables of the symbolic sate. If these constraints are satisfiable, the Validator deems the path feasible.

This module’s implementation is detailed in Section 4.6.

4.2 Pre-processing

In this section, we will discuss Java code analysis and how we support it in SpecTacle. In the second

part of this section, we discuss how SpecTacle provides support for FastSpec [19] integration. Finally,
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in the last part of this section we discuss how SpecTacle locates conditional branches, which are then

passed to Explorer for trace extraction.

4.2.1 Java Code Analysis

In order to add support for Java[78] programs we implemented jparse as a proof-of-concept and defined

according to algorithm 1. The retrieved code contains branch instructions, like jumps and calls, to

hardcoded addresses. These branch instructions are not compiler-friendly since during compilation

time the compiler might not map the branch targets to the same addresses they are mapped to during

execution, which leads to compilation errors. To solve this problem, we insert labels before branch

targets within the bounds of the method being parsed. Jumps and calls to out-of-bounds addresses are

handled by creating mock routines that perform a return instruction. This solution is not optimal and can

lead to false negatives. It is possible to build a more accurate solution by analyzing the JVM process’

address space and keeping context about the JIT-compiled methods, which is left as future work.

The disassembleMethod and gatherMethods represent wrappers to JRE commands. The commands

used to gather the compiled methods and to disassemble those methods can be found in listing 4.1

and 4.2 respectively.

After a valid assembly file is generated by jparse it can be compiled and analyzed by SpecTacle.

java −Xbatch −XX: − TieredCompi la t ion −XX:+ Pr in tComp i l a t i on

−cp <classpath> <main class>

Listing 4.1: Gather compiled methods

java −Xbatch −XX: − TieredCompi la t ion −XX:+ UnlockDiagnosticVMOptions

−XX: CompileCommand= p r i n t ,*{<method>} −cp <classpath> <main class>

Listing 4.2: Print method’s JITed code
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Algorithm 1: Generating compilable assembly from JVM JITed code

1 Function main(className):

2 methods←− gatherMethods(className);

3 foreach m ∈ methods do

4 labelCounter← 0

5 routineCounter← 0

6 assembly = disassembleMethod(m);

7 foreach instruction ∈ assembly do

8 if instruction is a jump then

9 label = ”.LB” + labelCounter;

10 labelCounter←− labelCounter+1;

11 instruction.replace(jump target, label);

12 assembly.addLabel(label);

13 end

14 else if instruction is a call then

15 label = ” sub” + routineCounter;

16 routineCounter←− routineCounter+1;

17 assembly.addSubRoutine(label);

18 end

19 end

20 writeFile(template(m));

21 end

4.2.2 FastSpec Integration

Tol et al. [19] propose that taint analysis or symbolic execution tools can be used to further analyse

the potential gadgets detected by FastSpec to build an efficient end-to-end solution for finding Spectre

gadgets. With this goal in mind, we provide support for analysing functions labeled as vulnerable by

FastSpec in SpecTacle.

The output of FastSpec [68] consists of a file containing the confidence level for each window of

tokens. A token is a space-separated string from the disassembly of the binary being analyzed. For

example, the instruction xor %ebp , %ebp is separated into the tokens: "xor", "%ebp", "," and "%ebp".

These tokens are grouped in windows of a fixed size and written to a .tsv file, one window per line.

Tokens from contiguous windows overlap by a fixed amount. This way, consecutive windows contain the

tokens from the previous window shifted left by x, where x = window size−overlap followed by the next

token from the disassembly of the binary.

FastSpec reduces the dictionary of tokens by replacing certain types of tokens, like function labels
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Figure 4.2: FastSpec’s Execution flow
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Figure 4.3: FastSpec’s execution flow modified to retrieve the function labels and generate a gadgets
file. Labels marked with * represent modified script files.

and immediate values, by generic representations, such as <label> and <imm> respectively. As we are

interested in mapping the confidence levels given by FastSpec to functions and consequently memory

addresses of the conditional branches inside those functions, we need to recover these labels. Fig. 4.2

illustrates FastSpec’s execution flow, from the assebmly input file until the generation of the output.tsv

file that maps each token window to a confidence level.

To get the function labels out of FastSpec, we need to modify the source code. First, FastSpec’s [68]

reducer.py script is responsible for replacing function labels, immediate values and unknown artifacts

present in the input assembly file for generic tokens (<label>, <imm> and <UNK>). We modify this script

to keep function label tokens instead of replacing them with the <label> token. We do this by matching

the processed tokens to the following regular expression, which corresponds to how objdump identifies

function labels: ([0-9a-f])+<([a-zA-z0-9 @.])+>. These label tokens are then passed to list2tsv.py,

which will generate the .tsv mentioned previously. Each token in a window is assigned a function label,

which is logged to a separate .labels file. These labels are then removed so that they are not present

in the final .tsv not to influence the results of FastSpec’s classifier.

After feeding the .tsv to the classifier, we match the output of FastSpec, i.e., the confidence level of

each window, to its corresponding labels using the .labels file. From this matching we generate a

gadgets file that contains pairs of the form <function label, confidence level>. The gadgets file

along with its corresponding binary are then fed to SpecTacle. First, the gadgets file is filtered for

function labels where the confidence level exceeds a given threshold. SpecTacle then only analyses the

functions where the confidence is above that threshold. Fig. 4.3 shows the modified execution flow, with

the modified script files marked with a * character.
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4.2.3 Locating Conditional Branches

A key stage of SpecTacle’s workflow is locating the conditional branches since our searches will always

start from a basic block containing a conditional branch. To locate these branches, SpecTacle uses

radare2 [79] to disassemble the binary. Then, every instruction of every function identified by radare2

is iterated over, and its operation type is checked. The operations with type cjmp are conditional jumps

and are saved in a list.

4.3 Explorer

The Explorer is responsible for identifying the paths where potential gadgets are located. The Explorer

starts by lifting instructions to an intermediate representation (IR), VexIR [76]. Working with an inter-

mediate representation makes it easier to reason about program semantics because we are no longer

exposed to program syntax, making SpecTacle language agnostic.

It works in three main stages:

• Stage 1: Lift instructions to intermediate representation (PyVEX). Each call to the Explorer’s

generate paths method is passed the address of a specific conditional branch from which to

start the exploration. Every basic block that is reached by the Explorer is lifted to Valgrind’s

[80] Vex [76] intermediate representation through a python libvex wrapper PyVEX [81], using the

angr [77] framework. These basic blocks comprised of Vex statements are called Intermediate

Representation Superblocks (IRSB). These blocks are a form of extended basic block [82, 83].

A basic block is a sequence of instructions that ends in either a branch instruction or an instruction

label [55]. An extended basic block contains only a single entry but can contain more than one

conditional branch instructions [82]. In figs. 4.4 and 4.5 we can see that the IRSBs recovered

by PyVEX (fig. 4.5) have a 1-to-1 correspondence to the assembly basic blocks identified by and

Capstone [84] (4.4).

• Stage 2: Build a jump graph. PyVEX matches each binary’s basic block to an IRSB. An IRSB

contains a jumpkind field that holds the type of the IRSB’s default jump, which are the branching

instructions at the end of each IRSB. Boring jumps correspond to conditional branches with a

branch taken and a branch not taken address where execution can flow to, where all other

kinds of jumps, like return or call, can only direct execution to one specific address.

All possible jump targets are mapped to an IRSB. The target’s address is added to the graph as

a node and connected to the previous IRSB through a directed edge. These paths are explored

recursively until either the maximum number of instructions per path is reached or until there are

no more possible jump targets.

• Stage 3: Extract paths from the graph. After the graph is built, all possible paths that start on

the first IRSB and end on each of the graph’s childless leaf nodes are found through a depth-first

search and returned.
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The paths returned by the Explorer will be referred as traces from now on. They are represented

by the BlockTrace class, and besides the trace, they contain the function address where they start and

the address of the first branching instruction in the trace. Each BlockTrace is then processed by the

next module of SpecTacle, the Executor.

Figure 4.4: Spectre-PHT gadget CFG using basic blocks recovered by Capstone [84]

4.4 Executor

The Executor is the main module of SpecTacle and is responsible for processing the BlockTraces re-

turned by the Explorer. The run method is the Executor’s primary interface with user code. It receives a

set of BlockTraces. Execution starts at the first address in the trace, which corresponds to the branch’s

address that will potentially trigger speculation.

Regarding the Executor’s internals, it follows the Visitor [86] design pattern, implementing a visit

method for each type of Vex statement found in an IRSB. A Vex statement contains a tag which is a

string that contains the statement type’s identifier. This allows the Executor to distinguish between dif-

ferent statement types and call the correct visitor method, as illustrated in listing 4.4. During execution,

each block in the BlockTrace is lifted, and each Vex statement passed to its corresponding visitor. The

Executor has internal structures that keep information on registers, temporary variables, and memory

writes. These correspond to python dictionaries that map register and variable names, as well as mem-

ory addresses to a numeric value. Additionally, the taint policy and the analyses can add information to

entries in these structures.

Being able to distinguish between statement types is necessary to be able to call the correct taint

policy methods, as discussed in Section 4.4.2. The most relevant statement types are:

• IMark – Since an assembly instruction can be represented as a sequence of Vex statements, it is

necessary to keep track of where an assembly instruction ends, and the next one begins. An IMark

is placed before the start of a new assembly instruction and keeps track of its original address.
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Figure 4.5: Spectre-PHT gadget CFG using IRSBs recovered using angr [82] and PyVEX [85]

• Put – Represents writing data into a register identified by its byte offset property, and a type

which represents the size of the value being written.

• Dirty – Some statements that Vex does not directly support are handled by dirty helpers that

emulate their functionality. Dirty statements identify such helpers. An example of an instruction
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that is represented by a Dirty statement is cpuid.

• WrTmp – Represents instructions that write to Vex temporary variables. WrTmp is characterized

by its data property which is a Vex expression. A notable Vex expression is Get which is the

counterpart to Put in the sense that it represents reading data from a register, as opposed to

reading data from a register.

• Store – A Store statement represents a memory write.

• CAS – This statement identifies an atomic Compare-and-Swap operation, either single or double-

element.

• Exit – Represents a conditional exit from the middle of an IRSB. An Exit statement is used to

represent a conditional branch.

• PutI and GetI – These are necessary to describe areas of the guest state where registers are

indexed like in an array, like in the case with SPARC [87] register windows, for example. Vex also

uses these two statement types to represent floating-point operations involving AVX [42] registers.

Executor State

Each visitor method simulates the statement’s intended changes to the guest state and reflects them

in the Executor’s state. The first time a register or a memory address is read from, the value is unknown

to the Executor, so default values are used. Whenever a WrTmp statement is visited, a temporary variable

might be created. This variable is identified by an integer, and the Executor uses this identifier as the

key to an internal map that links variable identifiers to their value. This value can be updated through

other WrTmp statements including arithmetic operators.

Store and Load instructions are used to read and modify a given memory address. This address

can be provided as a constant or as a temporary variable. Both alternatives provide an address for

the memory operation that is consistent with the Executor’s state for the given trace. In the case of the

address provided by a temporary variable, this can be the result of arithmetic operations, either over

a constant value attributed to the variable in an earlier WrTmp statement or over the default value for

uninitialized data. According to our observations, memory is addressed consistently throughout each

trace, so this method does not commonly produce two mappings for the same memory address.

Run Method

Listing 4.3 illustrates a stripped-down version of the run method. First, a dictionary structure is prepared

to be returned by creating an entry for each analysis installed in the Executor, as shown in line 2. Then,

for each provided trace, the Executor’s state is reinitialized. Reinitializing Executor state means that

registers are set to their default values, and the memory and temporary variables structures are both

cleared. A new taint policy is instantiated in line 5 so that all of its structures are also cleared. Lines 7 to
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10 correspond to the main loop of the run method. For each basic block address of the given trace, the

corresponding IRSB is recovered, and its statements are visited sequentially, using the visit statement

illustrated in listing 4.4. This visit method calls the Executor’s specific statement visit methods, which

enforce the taint policy for the necessary statements. A detailed explanation of the taint policy is pro-

vided in Section 4.4.2. The visit method also invokes the installed analysis hooks that perform arbitrary

analyses using the Executor’s state. These analysis hooks generate reports which are then retrieved in

lines 12 to 15 of Listing 4.3. Finally, these analysis hooks and the Executor’s state are reset for the next

trace.

1 def run(traces):

2 report = {a.tag : set() for a in self.analysis}

3 for trace in traces:

4 self.initialize_state ()

5 self.policy = self.policy_type ()

6

7 for block in trace.basic_blocks:

8 irsb = get_IRSB(block)

9 for stmt in irsb:

10 self.visit(stmt)

11

12 for a in self.analysis:

13 if a.report ():

14 report[a.tag]. update(rep)

15 a.reset()

16

17 self.reset ()

18

19 return report

Listing 4.3: Executor’s run method. Iterates over a set of traces, visits the IRSB statements and returns

analysis reports

4.4.1 Analysis Hooks

Analysis hooks are used to reason about the Executor state and about the Vex statements that are

visited. These are where SpecTacle implements its Spectre gadget detection logic. This section will

provide an overview of analysis hooks and how they interact with the Executor.

When the Executor is instantiated, analyses can be installed in the Executor. An Analysis is a class

that derives from the DefaultAnalysis class which contains visitor methods for all Vex statements

types, which we call hooks. These methods have access to all of the Explorer’s internal structures and

properties. In SpecTacle, there are three main analyses that are registered in the main Executor de-
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pending on SpecTacle’s input options: DefaultCacheEncodingAnalysis, ComparisonResultAnalysis

and NetSpectreAnalysis. These will be explore in detail in the Gadget Detection Analyses section.

Akin to the Executor’s visitor methods, the name for the correct hook for the given statement type

is also calculated from extracting the PyVEX’s statement tag and appending it to the string ”hook ”. In

Listing 4.4 we can see the code that performs the hook calls.

1 def visit(self , stmt):

2 name = "visit_ {}".format(stmt.tag.split("_")[1])

3 hook_name = "hook_{}".format(stmt.tag.split("_")[1])

4

5 fn = getattr(self , name , None)

6 hooks = [getattr(a, hook_name , None) for a in self.analyses]

7

8 if fn is not None:

9 fn(stmt)

10 for hook in hooks:

11 hook(self , stmt)

12 else:

13 raise NotImplementedError(f"Uninplemented Instruction: {stmt}")

Listing 4.4: Executor’s statement visit method

4.4.2 Taint Policy

The purpose of the taint policy is to keep track of taint propagation The Taint Policy is implemented

in the likes of the Executor, also following the Visitor design pattern, but it is treated as an Analysis

by being called by the Executor on every statement visited. Unlike an Analysis, the Executor must

always have a Taint Policy instantiated.

DefaultTaintPolicy

In the case a Taint Policy subclass is not provided at the moment of the Executor’s instantiation, the

DefaultTaintPolicy class is used. The DefaultTaintPolicy’s implementation will now be described. To

help with the discussion, we define the following concepts:

• t(v) denotes the taint value of the entity v

• T/S denote Tainted and Sanitized respectively

• Ri denotes register i

• Vi denotes variable i

42



• m(i) denotes memory content at address i

+

A Taint Policy needs to be defined for the statement types Put, PutI, Store, WrTmp, CAS and

Dirty, since only the operations performed by those statement types can propagate or sanitize taint

values. Each of these statements can be summarized in an assignment of the form lhs = rhs, rhs and

lhs standing for right-hand-size and left-hand-size of an assignment operation. In the DefaultTaintPolicy,

taint is propagated as follows:

Dirty

By definition, this statement type sanitizes the lhs, which is a PyVEX temporary variable, so we can

describe it as: t(lhs) = S

Put/PutI

The algorithm for Put and PutI is the same. These statements write to registers, either directly or by

indexing in the case of PutI. The taint calculation for a Put statement of the form Put(offset, rhs) can

then be represented as the following: t(Roffset) = t(rhs).

Compare and Swap (CAS)

This statement cannot be precisely defined in the context of SpecTacle’s Executor. Therefore we only

consider the step which is constant and that we can predict and evaluate, which is that the temporary

variable that holds the value to be tested, denoted as old is always populated with the contents of the

memory address to be compared, as stated in LibVEX’s documentation [88]. So, we can interpret this

statement as another lhs = rhs type of assignment where lhs is the old temporary variable, and rhs is

the content of the memory address.

Store

As this statement type represents memory writes, it is clear that its lhs represents the memory at the

target address, and the rhs represents the content to be written.

WrTmp

This statement type holds most of the DefaultTaintPolicy’s logic. The lhs in these statements is always

a temporary variable, but the rhs can be any of the following PyVEX expressions:

• Get and GetI instructions read the content of a register into a temporary variable. The rhs in this

case then is the content of the register.

• Multi-operand operations and CCall statement types are handled by the DefaultTaintPolicy in

the same way. Its operands or arguments are considered the rhs of the taint propagation. The
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elements of the rhs are iterated over, and if at least one of them is tainted, the lhs is considered

tainted. In case more than one element in rhs are tainted, the last one to be iterated over is chosen

to be the taint source. This heuristic serves only for code simplicity, and its improvement is left as

future work. The taint propagation logic is illustrated in listing 4.5.

1 CCall/Unop/Binop/Trip/Qop(tmp , args):

2 for arg in args:

3 if t(arg) == T :

4 rhs.append(arg)

5 else:

6 rhs.insert(0, arg)

7 t(Vtmp) = t(rhs[-1])

Listing 4.5: Multi-operand taint propagation logic implemented by the DefaultTaintPolicy

• If Then Else (ITE) - The statement represents the ternary conditional operator composed of a

condition, a true and a false fields. The DefaultTaintPolicy does not evaluate the condition.

Instead, it takes the taint value of the true and false fields, sanitizing the lhs if they are both

sanitized and tainting it otherwise.

• RdTmp - This statement represents a simple assignment between two temporary variables V1 =

V2. This is the simplest case for the taint policy and is represented as follows: t(V1) = t(V2).

• Load - A Load statement can propagate taint in two ways: either the content of the memory

address being loaded is tainted, or the address itself is user-controlled and, therefore, tainted. The

DefaultTaintPolicy prioritizes the latter, checking first if the address is tainted, in case it comes from

a temporary variable, and only if this variable is sanitized the memory contents are checked. The

taint propagation logic is illustrated in listing 4.6.

1 Load(tmp , addr):

2 t(Vtmp) = (t(addr) == T ? T : t(m(addr)))

Listing 4.6: Load taint propagation logic implemented by the DefaultTaintPolicy

Internally, the DefaultTaintPolicy holds two dictionaries: one for registers and one for variables. The

register dictionary keeps a (taint, source) pair for each register in the architecture. These are initialized

to (”T”, None) and are updated when Put or Get statements are visited. The variables dictionary maps

a variable to a register present in the registers dictionary, and is updated when visiting Dirty and WrTmp

statements. When a statement modifies a variable’s taint value, by design its taint source is a register

and so its entry in the variables dictionary will point to that source register. There is a particular entry

in the registers dictionary called const which is never tainted and is pointed to by variables that have

been sanitized by a constant.
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The visitor method for Store statements behaves differently. Instead of updating the DefaultTaint-

Policy’s internal strucutres, it alters the Executor ’s memory model directly, updating the taint field the

corresponding memory entries being modified.

StrictTaintPolicy

To reduce the number of false positives and increase SpecTacle’s precision potentially at the cost of

some false negatives, we implemented a stricter taint policy (StrictTaintPolicy) for testing. This taint policy

only introduces taint to registers or memory addresses encountered before the speculation started. We

observed that the majority of the gadgets found during SpecTacle’s evaluation performed some operation

with the attacker-controlled data in the basic block where the conditional branch is located. This taint

policy exploits this fact to reduce the number of tainted memory loads identified and consequently reduce

the number of flagged gadgets, the majority of which were false positives.

4.5 Gadget Detection Analyses

This section will describe the 3 main gadget detection analyses used by SpecTacle: DefaultCacheEn-

codingAnalysis, ComparisonResultAnalysis and NetSpectreAnalysis.

A generic analysis that derives from DefaultAnalysis is expected to produce a Report. Reports

contain a trace, a function address, and a branch address. These fields serve to keep context about

specific areas of the binary.

The goal of gadget detection analyses is to produce a report containing Spectre gadget candidates,

represented by the class GadgetCandidate that inherits from Report. In addition to the fields of a generic

Report, GadgetCandidates also contains a list of memory accesses. SpecTacle uses the MemoryLoad

class to represent these accesses. A MemoryLoad represents a Vex Load statement encountered when

analyzing a given trace and holds information about where those loads are performed. It also keeps

information on the taint source and the value of the address being accessed.

For example, the string representation of a MemoryLoad at address 0x401240 that writes to the tempo-

rary variable t24 and is tainted by the rdi register is as follows: 0x401240 -> var:t24 ; by:rdi.

There can be several types of reports. A report contains the relevant data for further analysis and

verification of each gadget type being identified. Each analysis type results in a different type of report:

• DefaultCacheEncodingAnalysis - GadgetCandidate

• ComparisonResultAnalysis - GadgetCandidateV10

• NetSpectreAnalysis - GadgetCandidateNS
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4.5.1 DefaultCacheEncodingAnalysis

This Analysis’ goal is to identify 14 out of the 15 gadgets by Paul Kocher[41] as well as two extra that

are defined in the FastSpec [19] paper. These gadgets are all derivations of the v01 gadget that can be

seen in listing 4.7. For this gadget and its variants, the attacker controls x which is used to mistrain the

branch predictor and eventually trigger an out-of-bounds memory access (array1[x]) during speculative

execution. This access’ result is then used to index a second array that encodes the memory contents

accessed in the previous memory access into the cache. These contents can then be leaked by an

attacker using a cache-based timing attack like Flush+Reload. The key aspect of this gadget, besides

the attacker-controlled index, is the dependency between the second memory access and the first. This

pattern can be seen in all of the previously mentioned gadgets, except in the v10 gadget shown in

listing 4.8 in fig. 4.6, which does not leak data by encoding the leaked data in the cache directly. Instead,

the v10-style gadget variants leak data by accessing or not a specific memory address depending on

the result of a comparison. This comparison is performed between the value of the data to be leaked

and an attacker-controlled value. This gadget variant will be explored in Section 4.5.2.

1 void victim_function_v01(size_t x) {

2 if (x < array1_size) {

3 temp &= array2[array1[x] * 512];

4 }

5 }

6
7 ASM:

8 mov eax , DWORD PTR array1_size

9 cmp rcx , rax

10 jae SHORT $LN2@victim_fun
11 lfence

12 lea rdx , OFFSET FLAT:__ImageBase

13 movzx eax , BYTE PTR array1[rdx+rcx]

14 shl rax , 9

15 movzx eax , BYTE PTR array2[rax+rdx]

16 and BYTE PTR temp , al

17 $LN2@victim_fun:
18 ret 0

Listing 4.7: v01 gadget

1 void victim_function_v10(size_t x,

uint8_t k) {

2 if (x < array1_size) {

3 if (array1[x] == k)

4 temp &= array2 [0];

5 }

6 }

7 ASM:

8 mov eax , DWORD PTR array1_size

9 cmp rcx , rax

10 jae SHORT $LN3@victim_fun
11 lea rax , OFFSET FLAT:array1

12 cmp BYTE PTR [rcx+rax], dl

13 jne SHORT $LN3@victim_fun
14 movzx eax , BYTE PTR array2

15 and BYTE PTR temp , al

16 $LN3@victim_fun:
17 ret 0

Listing 4.8: v10 gadget

Figure 4.6: Side-by-side of the v01 gadget from Kocher [41], introduced in the Spectre [3] paper, and
the v10 gadget variant from Kocher [41]
.

The DefaultCacheEncodingAnalysis works by tracking dependencies between tainted memory ac-

cesses, i.e., memory accesses where the address being accessed is potentially attacker-controlled.

First, we must define the concept of dependency. A variable is deemed dependent on another variable

or expression if its value is affected by it. Take the two Vex statements in listing 4.9. Line 1 shows the t24

variable’s value being assigned to the contents of the memory at the address given by the value of the

t18 variable, so t24 depends on that memory load expression. In line 2, the variable t25 is assigned the

result of the arithmetic operation t24 + 1, which means its value is affected by the value of t24, which in

turn depends on the memory load performed in line 1. Therefore, t25 is also dependent on the memory
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load LDle:I64(t18).

1 t24 = LDle:I64(t18)

2 t25 = Add64(0x1 ,t24)

Listing 4.9: Two Vex statements. A Load statement writes to variable t24. The value of the t24 variable

is then used to calculate the value of the variable t25.

The DefaultCacheEncodingAnalysis has an internal structure that keeps track of all the variables

whose value is affected by a tainted memory access, i.e., dependent on such memory access. When

visiting a memory access statement on a tainted address, an entry is created in this structure, mapping

the temporary variable corresponding to the lhs of the Load statement with a unique identifier. Each of

these identifiers is also associated with a taint source.

Assuming v0 is tainted by the register rdi and that no memory accesses have been visited so far,

when visiting the statement v1 = LD(v0), the structure would be updated with {v0 : n0, n0 : rdi}.

Subsequent statements that depend on v0 will modify this structure, keeping it up to date. If the next

visited statement is v1 = v0, the structure would be updated to {v1 : v0, v0 : n0, n0 : rdi}. Having this

structure, we can use the algorithm in listing 4.10 to query the structure for a given variable’s dependen-

cies.

If a variable is modified to no longer depend on a memory access, the structure is updated to reflect

that. For example, if later on in the execution we visit the statement v1 = Get(rax), then v1 will no

longer depend on the memory access n0 tainted by rdi, and the structure is updated to look like this:

{v1 : ”I”, v0 : n0, n0 : rdi}. A call to the lookback method on this last structure will stop when it reaches

the ”I” entry, not reaching a memory access identifier, so the variable is deemed independent of any

memory loads.
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1 def _lookback(dependencies , tmp , control):

2 ''' returns the memory access ID from which tmp depends '''

3 if tmp not in dependencies:

4 return -1, None

5

6 max_steps = len(dependencies) + 1

7 t = dependencies[tmp]

8 prev = tmp

9 steps = 1

10

11 # IDs are of the form "n#" where # is an integer

12 while "n" not in t and t != control:

13 prev = t

14 if steps >= max_steps:

15 raise Exception("MAX STEPS " + str(tmp))

16 steps += 1

17 if t in dependencies:

18 t = dependencies[t]

19 else:

20 # not found

21 return -1, None

22

23 # found a loop , so return

24 if t == control:

25 return -1, t

26

27 return t, prev

Listing 4.10: Lookback method for querying the dependency structure

For all statement types except WrTmp, the DefaultCacheEncodingAnalysis calls the auxiliary Analysis

on the statement being visited.

When visiting a WrTmp, the DefaultCacheEncodingAnalysis starts by calling the auxiliary Analysis

WrTmp visitor, which will return whether we are in the presence of a memory access and if it has a

dependency or not. The DefaultCacheEncodingAnalysis then uses this information to build a directed

graph, where each node represents a memory access, and each edge represents a dependency rela-

tion.

At the end of the trace ’s execution, the DefaultCacheEncodingAnalysis generates a report contain-

ing all potential gadgets it has identified, which correspond to all of the possible paths in the dependency

graph with at least two nodes.
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Example

As an example of the DefaultCacheEncodingAnalysis’s behavior, we will follow the execution of a trace

from a binary containing the gadget in listing 4.7. We are looking specifically at a trace composed of the

IRSBs in fig. 4.5. This trace will be referred to as trace A.

The Executor and the DefaultTaintPolicy will run their course, building a memory model, propa-

gating taint and calling the DefaultCacheEncodingAnalysis’s visitors. When the execution reaches the

statement at line 5 of the block at address 0x40123e (t24 = LDle:I8(t18)) the DefaultCacheEncodin-

gAnalysis will query the Executor ’s taint policy for the taint value of t18, which is currently tainted by

rdi. An entry is then created in the dependency structure as well as a node in the dependency graph,

representing this memory access. Let’s call this node LD0.

Execution will resume, but now the DefaultCacheEncodingAnalysis will also update its internal de-

pendency structure, keeping track of all the variables that depend on t24. This is the case for the variable

t42 which is used in line 45 as the address of another memory access (t48 = LDle:I8(t42)). This re-

lation implies that the memory access in line 45 depends on the memory access in like 28. To represent

this relation, a new node is created in the dependency graph (referred to as LD1), and a directed edge is

created, connecting LD0 to LD1.

When the trace finishes executing, a depth-first search will be performed on the graph, and the path

from LD0 to LD1 will be found and flagged as a potential Spectre gadget by being added to a Gadget-

Candidate report.

4.5.2 ComparisonResultAnalysis

As shown in listing 4.8 (fig. 4.6), gadget v10, requires two attacker-controlled variables instead of one:

x and k. This gadget works by leaking the result of the comparison array1[x] == k during speculative

execution by accessing a constant memory address based on the result of this comparison. The attacker

can then, like in the case for the previously mentioned gadget variants, perform a cache-based timing

attack like Flush+Reload to leak the result of the comparison, and consequently array1[x]. Here, there

is no dependency between memory accesses, so the DefaultCacheEncodingAnalysis cannot identify

this gadget variant.

SpecTacle’s approach to detecting this gadget type is to flag every memory access that is in the

scope of a tainted guard. A tainted guard corresponds to the guard of a conditional branch where a

comparison involving at least one tainted operand is performed. Subsequent memory accesses per-

formed in the context of this branch will inevitably leak data.

In the example in listing 4.8, the tainted guard corresponds to line 3, where the memory access respon-
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sible for the data leak is present in line 4.

It is crucial that we only flag tainted guards that can be triggered in the context of speculative ex-

ecution. Since every SpecTacle search starts from a conditional branch, it will encounter at least one

comparison before the branch itself. Because the DefaultTaintPolicy assumes every register is tainted,

these comparisons could potentially be flagged as tainted guards, which would be an error and increase

the number of false positives. The ComparisonResultAnalysis analysis solves this issue by tracking

whether the exploration has entered a zone where speculative execution can occur and only then starts

looking for tainted guards.

Whenever a tainted guard is found, the ComparisonResultAnalysis also stores the abort address.

The abort address corresponds to the address from which statements are no longer affected by the

tainted guard. So, for example, given the control flow in fig. 4.7, when encountering the tainted guard

that can lead execution to block B, the address of block C would be stored. The execution would then

be halted when reaching block C.

A

Tainted Guard

B

C
Figure 4.7: Example of a possible v10 gadget’s control-flow graph

ComparisonResultAnalysis behavior can be interpreted as a state machine. This state machine has

three states that are illustrated in fig. 4.8. Its states behavior can be described as follows:

1. State 1 visits statements until a conditional branch is found, where it transitions to state 2.

2. State 2 continues visiting statements until all the requirements are met for a tainted guard to be

identified. When a tainted guard is detected, the ComparisonResultAnalysis transitions to state 3.

3. State 3 continues visiting statements until either a memory load statement or the abort address

are reached. A v10 gadget is then detected or not, respectively.
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v10 gadget

Gadget not 
found

statementstatementstatement
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branch

tainted
guard

IMark(abort_adddr)

LDle

Figure 4.8: High-level ComparisonResultAnalysis analysis state machine. 1) In state 1 ComparisonRe-
sultAnalysis is waiting for a conditional branch. 2) While in state 2, ComparisonResultAnalysis is looking
for a tainted guard. 3) While in state 3, if a LDle statement is visited, a potential v10 gadget is flagged.

1 if (x < length)

2 if(array[x] > y)

3 flag &= true

Figure 4.9: NetSpectre leak gadget that uses the cache as a covert channel [46].

4.5.3 NetSpectreAnalysis

The purpose of the NetSpectreAnalysis is to identify NetSpectre [25] leak gadgets. NetSpectre [25] leak

gadgets have a very similar structure to Spectre V10-type gadgets. In essence, they leak data by modify-

ing microarchitectural state depending on the result of a comparison performed with a tainted guard [46].

Take the code snippet in fig. 4.9 from [46]. If the attacker controls both x and y the branch predictor

can be mistrained to perform an out-of-bounds memory access through array[x], and based on the

result of the comparison in line 2, flag will either be brought to the cache or not, which will cause a

difference in the runtime of future operations that use the flag variable. An attacker can measure these

runtime differences to obtain information about the contents of array[x].

Schwarz et al. also proposes an alternate side-channel based on the execution time of AVX2 instruc-

tions [42]. This channel uses the fact that the top half of the AVX2 unit becomes inactive after not being

utilized for a specific duration [44], so AVX2 instructions that use this unit take longer if the unit is inactive

[45]. This timing difference can be exploited like previously to leak the results of a comparison [25]. An

example of a leak gadget that uses this side-channel can be seen in fig. 2.4 [25].

NetSpectreAnalysis uses a tainted guard mechanism like the ComparisonResultAnalysis, but instead

of looking for memory accesses to encode data in the side channel, it looks for statements that change

microarchitectural state.

SpecTacle provides support for both the cache-based and the AVX2 side channels.

As mentioned previously, the cache-based side-channel works by bringing data to cache. This can be
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done with both memory loads and stores. ComparisonResultAnalysis already implements the memory

load case, so NetSpectreAnalysis only implements the memory store case: whenever a memory store

is detected within the scope of a tainted guard, a NetSpectre leak gadget is flagged.

Support for the AVX2 side channel is implemented similarly to the cache-based side channel. Instead

of flagging a gadget on a Store statement, SpecTacle queries the Intel Intrinsics Guide [33] for

AVX2 instructions. When an AVX2 instruction is found, a NetSpectre gadget is found and identified with

the tag (AVX).

4.6 Validator

The Validator is the last stage in SpecTacle’s workflow. The potential gadgets identified by the analy-

ses are given to the Validator, whose task is to validate the feasibility of the gadgets’ traces in the context

of speculative execution, i.e., if it is possible to follow the path specified by a given trace given the path

constraints imposed by conditional branch.

When facing a conditional branch, execution can follow in four different paths: two regular paths and

two transient paths:

• The regular paths correspond to the two possible addresses execution can continue to, architec-

turally: the then branch and the else branch. These correspond to the red and green paths in

fig. 4.10. We are not interested in these paths since a focal characteristic of a Spectre gadget is

that it is executed in a transient path.

• The transient paths represent executions where a branch misprediction occurred. This will cause

the then and else branches to be executed in the wrong context. Using fig. 4.10 as reference,

these would correspond to the blue paths, where the then branch is executed with the constraint

c = false, and the else path being executed with the constraint c = true.

C

B A

c = true c = false c = true c = false

then else

Figure 4.10: Possible execution paths following a conditional branch C.
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To validate the feasibility of these transient paths, the Validator makes use of angr’s symbolic exe-

cution engine. Fig. 4.11 illustrates validation process for a transient path represented by the trace [B1,

B2, B3]. The several steps the Validator takes to evaluate this path are explained in detail:

B1

B2

B3

B1

B2 C1

pc = B2

sat

trace

3

2

1

B2

B3
4

5

Figure 4.11: Scheme of how the Validator simulates speculative execution and validates the feasibility
of a given transient path.

1. Execution starts at the first basic block of the given trace (B1). The gadget’s conditional branch

must belong to this basic block.

2. The execution proceeds until the conditional branch and executes the branching instruction. From

this, two different states should be created: one following the then branch (B2) and another follow-

ing the else branch (C1), both with the respective constraints that caused execution to flow to the

respective path. One of these two states must correspond to the second address of the trace. In

this example, this address is B2.

3. The Validator then identifies the state that continues to the correct address after the conditional

branch (B2), drops it, and selects the alternative state to continue execution by modifying its pro-

gram counter register to point to the address of the B2 basic block. This modification forces the

rest of the path to be executed with the constraints imposed by the branch not taken path while

following the branch taken path, simulating a transient path. Switching the path constraints is

equivalent to executing one of the blue paths in fig. 4.10.

4. From this state, the Validator now asks the simulation manager to find a path that follows the

gadget’s trace and executes its dependent memory loads or tainted guards in the correct order.

5. At the end of the symbolic execution, if the path constraints are satisfiable, the Validator deems this

path feasible and approves this gadget candidate. Otherwise, this gadget candidate is discarded.
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4.7 Optimizations

One of the main objectives of this work was to develop a tool that would be faster than the other available

tools. In this chapter, we will discuss optimizations implemented in SpecTacle to increase performance

and reducing runtime.

4.7.1 Memory Load Limit

The number of micro-ops that can be executed speculatively in modern CPUs can reach the hundreds

[31], but since there is not a one-to-one relationship between micro-ops and instructions, it is impossible

to define a precise limit for the maximum number of instructions on a transient path.

Memory load instructions take orders of magnitude longer to resolve than accessing a CPU register

[89, 90]. Therefore, a limited number of memory loads can be performed in a transient path. For

example, Ragab et al. [91] managed to fit 12 load instructions in a transient window by manipulating the

FPU through a chain of dependent floating-point operations. This number seems to be a reasonable

upper limit on the number of loads possible on a transient path in modern CPUs, so SpecTacle adds

an extra Analysis to the Executor that causes the execution of a trace to be halted when the thirteenth

memory load is visited in that trace.

4.7.2 Parallelization

Each trace can be processed independently by the Executor. Therefore, to decrease execution time

SpecTacle allows dividing the workload between a configurable number of threads. The results obtained

by parallelizing the trace processing were significant and will be discussed in chapter 5. Although Spec-

Tacle supports running the Executor and analyses in parallel, the Explorer and the Validator remain as

single-threaded modules. Providing multi-thread support for both modules can experience great perfor-

mance benefits from running in parallel. This support is left as future work.

4.7.3 State Memoization

Due to how the Explorer generates the traces, they will inevitably share basic blocks. An optimization

that could significantly reduce runtime in expense for memory usage would be to cache the Executor,

taint policy, and analyses states of IRSBs that will be repeatedly visited.

Ultimately, our implementation of state memoization was faulty, which affected both the runtime and

memory usage performance of SpecTacle for the worse. For this reason, a working implementation of

state memoization is not provided in SpecTacle and is left as future work.
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Chapter 5

Results

In this chapter we discuss SpecTacle’s performance and scalability, as well as comparing gadget detec-

tion results with FastSpec. We will discuss the testing data, as well as the experimental setup. Finally,

we provide examples of Spectre-PHT gadget detection in a Java program, as well as validating our

NetSpectre [25] AVX-based gadget detection analysis. We end this chapter by looking at a real world

example of a gadget detected by SpecTacle in Brotli [92].

5.1 Problem Description

Automated Spectre-PHT gadget detection is still a novel research topic. Much research has been devel-

oped in this field in the last two years, and many approaches have been explored. Tools like SpecFuzz

and the more recent SpecTaint [16, 23] explore dynamic approaches to gadget detection, but they suf-

fer from problems inherent to dynamic analysis. They are bonded by test case quality [23] which can

limit code coverage, and gadgets present in unexplored code are not found. SpecTaint [23] claims that

the dynamic approach can be combined with static approaches to reduce the amount of uncovered

code, resulting in fewer false negatives. As for static analysis tools, oo7 [20] performs taint analysis

statically at the binary level to identify Spectre-PHT gadgets. However, oo7 is reported to have high

execution times and introduce both false negatives, and false positives [19, 23]. Another approach

explored in recent research is symbolic execution. SPECTECTOR [17] introduced the concept of Spec-

ulative Non-interference (SNI) to model Spectre gadgets using symbolic execution, while Pitchfork [70]

introduces speculative consant-time with the same purpose to detect Spectre gadgets in speculative ex-

ecution. These approach suffer from the inherent flaw of symbolic execution that is path explosion. Also,

SPECTECTOR suffers from having poor instruction coverage [17, 18], i.e., many instructions are not

supported, which makes this tool not appropriate for real-world use. KLEESpectre introduces an explicit

approach to model speculative execution in a symbolic execution context that heightens the problem of

path explosion. Haunted RelSE [18] improves upon KLEESpectre’s explicit model by developing a novel

exploration technique to attenuate the problem of path explosion, which improved precision, recall, and

execution times [18]. FastSpec [68] takes a novel approach to Spectre gadget detection by applying
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NLP techniques to Spectre gadget detection. FastSpec trains a classifier based on BERT [66] with over

one million generated gadgets to classify Spectre gadgets. This approach is promising because it keeps

execution times low. However, it introduces false negatives when considering classifier outputs with high

confidence levels. To reduce the number of false negatives, we can look at lower confidence levels which

inevitably increases the number of false positives. Also, in Section 3.3 we argue that FastSpec’s training

set introduces avoidable false positives.

Our main goal with SpecTacle is to provide a static analysis alternative based on taint analysis that

significantly reduces the number of false negatives compared to other static analysis tools while keep-

ing runtimes low. Secondly, our tool provides context about the flagged gadgets, like execution path

and, when possible, what data must be attacker-controlled. This information facilitates the combina-

tion of SpecTacle with dynamic analysis or symbolic execution tools for a more precise analysis. Also,

the problem of gadget detection for JITed [59] languages has not been tackled yet, so SpecTacle pro-

poses a technique to provide support for such languages by developing a proof-of-concept that detects

a Spectre-PHT in a sample Java class. This technique is applicable to other JITed programming lan-

guages. Another problem tackled by SpecTacle is the detection of NetSpectre [25] gadgets, in particular

gadgets that use the AVX-based side-channel [25]. Finally, at the cost of execution time, SpecTacle

provides a symbolic path validation mechanism to reduce the number of false positives further.

With SpecTacle we successfully achieved our goals by providing a tool that produces less false

negatives than the state-of-the-art tool FastSpec [19] that is reported to have very high recall values

while being faster than other state-of-the-art tools. In addition, SpecTacle manages high recall values

while keeping low execution times for similar speculation window sizes.

In our experiments, we could not successfully run several of the state-of-the art tools. Our Spec-

Fuzz [16] setup could not achieve the code-coverage results reported by Oleksenko et al. [16] and [23].

SpecTaint [23] is still not open-sourced and we did not receive a response from the authors. Oo7 [20]

is one of the tools that SpecTacle was meant to improve upon, but we could not successfully setup this

tool following the instructions from the official GitHub repository ([93]) due to outdated dependencies.

However, we managed to run a community-modified version ([94]) but could not replicate the results

from the original paper ([20]) using this version, failing to detect vulnerabilities in the 15 gadgets from

Kocher [41], so we deemed it not suitable for comparison. Finally, Binsec/Haunted only supports 32-bit

binaries, which SpecTacle also supports but it is not optimized for, so we decided a fair comparison

could also not be performed with this tool.

5.2 Technologies

Python [95] 3.9.7 was the language of choice for the implementation of SpecTacle due to the number of

supported modules and frameworks.

The angr[77] Framework was used to lift the input binary’s basic blocks to PyVex[81] and for its symbolic

execution engine. The version used was 9.0.9506.
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For disassembly and analysis of the input binary’s properties, the r2pipe[96] package was used to script

the radare2[97] debugger from Python. Version 1.6.2 of r2pipe was used to interact with radare2 version

5.4.3.

5.3 Experimental Setup

Experiments were performed on a desktop computer equipped with an AMD Ryzen 3700X 8/16, 32GB

of RAM, and an Nvidia GeForce GTX 1650 GPU. The speculation window was variable, according to

the tables in the following sections.

We perform evaluations on the Real-world V1 Dataset from SpecTaint [23] and SpecFuzz [16] which

are comprised of six libraries: OpenSSL [98] v3.0.0, a Brotli [92] v1.0.7, JSMN [99] v1.1.0, HTTP [100]

v2.9.2, libHTP [101] v0.5.30, and libYAML [102] v0.2.2. Finally, for comparing our results with Fast-

Spec’s [19] we used some benchmarks of the Phoronix Test Suite v10.2.0 [103].

Even though SpecTacle supports all formats that angr [82] can load with CLE [82], we focused our

development and testing on the x86-64 architecture and ELF binaries.

5.4 Performance and Scalability

One of our goals was to make a scalable tool that could be used for big code bases, meaning that

execution times and resource requirements do not exponentially scale with the size of the codebase.

Tables 5.1, 5.2 and 5.3 illustrate how SpecTacle scales according to the selected performance metrics.

The defined metrics are:

• The program size in bytes;

• Execution times in seconds;

• The number of conditional branches (#B);

• The number of paths explored (#P);

• The number of functions flagged as containing a gadget (#F);

• The number of gadgets flagged by the DefaultCacheEncodingAnalysis (#D);

• the number of gadgets flagged by the ComparisonResultAnalysis (#C).

5.4.1 Explorer

As illustrated in table 5.1, table 5.2 and table 5.3 we conclude that SpecTacle’s performance grows ex-

ponentially with the number of conditional branches present in the given binary. Also, the size of the
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speculation window has a significant impact on performance because it leads to path explosion. By

design, the number of conditional branches in the input binary will always be the main performance

deterioration factor for SpecTacle. However, it is possible to reduce the number of explored paths by

identifying the nature of a conditional branch before exploring it. At this point in development, SpecTacle

does not check the nature of the conditional branch, so branches that do not perform bounds checks

are analyzed, significantly decreasing performance and precision. This analysis is left as future work as

part of developing a more robust and efficient Explorer module.

Library Size(byte) Time(sec) #B #P #F #D #C

libHTP 335K 1.97 149 160 1 19 1
HTTP 7.3K 1.16 20 28 1 5 0
JSMN 26K 2.99 101 1939 1 8 0
Brotli 4,3M 78.71 6450 49278 295 3186 62
YAML 162K 22.09 2333 26067 101 1145 7
OpenSSL 162K 5.33 404 2379 19 81 6

Table 5.1: SpecTacle results for a speculation window of 15 instructions using the DefaultTaintPolicy,
without running the Validator.

Library Size(byte) Time(sec) #B #P #F #D #C

libHTP 335K 2.22 149 522 1 19 1
HTTP 7.3K 1.17 20 39 1 6 0
JSMN 26K 45.84 101 68887 1 72 2
Brotli 4,3M 722.17 6454 679611 305 4696 290
YAML 162K 1839.55 2333 2593070 102 1351 128
OpenSSL 162K 11.67 404 10010 31 152 17

Table 5.2: SpecTacle results for a speculation window of 35 instructions using the DefaultTaintPolicy,
without running the Validator.

Library Size(byte) Time(sec) #B #P #F #D #C

libHTP 335K 2.149 149 522 1 7 1
HTTP 7.3K 1.157 20 39 1 4 0
JSMN 26K 45.470 101 68887 1 71 2
Brotli 4,3M 669.40 6454 679611 284 2502 8
YAML 162K 1793.29 2333 2593070 93 834 8
OpenSSL 162K 11.104 404 10010 29 57 0

Table 5.3: SpecTacle results for a speculation window of 35 instructions using the StrictTaintPolicy,
without running the Validator.
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5.4.2 Validator

The goal of the Validator is to prune detected gadget traces that are not feasible during speculative

execution, i.e., given the constraints of the conditional branch, the given path identified by the previous

analysis cannot be executed. This module adds precision at the cost of execution time. Table 5.4 illus-

trates the tradeoff between the number of flagged gadgets and the execution time. Unfortunatelly, we

could not obtain the values for the Brotli binary due to a floating point exception launched from angr’s [82]

internals. We could not solve this issue.

The Validator is responsible for the bulk of SpecTacle’s execution time. These results show that this

approach is not optimal for precision in Spectre gadget verification and negatively affects the tool’s scal-

ability. The current Validator does not provide enough precision increase to justify the performance loss

it entails. This performance loss is primarily due to the overhead imposed by setting up a new simulation

manager [82], and symbolic state [82] for every analyzed path. Since we are paying this overhead, a

more in-depth analysis such as SNI [17, 18] or speculative constant-time [70] semantics checking can

be performed, and optimizations such as Haunted RelSE [18] can be used for a more precise and effi-

cient gadget validation module. Another reason for the Validator’s high execution time, compared to the

Executor and the analyses, is that we could not implement a fully working parallel version of the Validator

due to problems with exception handling. If we can validate gadget traces in parallel, performance will be

greatly increased. This optimization is left as future work. Nevertheless, for smaller speculation window

sizes or smaller binaries, making use of the Validator to increase precision is shown in Section 5.5 to be

effective.

Binary 15 instruction window 35 instruction window

Time(sec) #F #D #C Time(sec) #F #D #C

libHTP 69.97 1 19 1 117.45 1 19 1
HTTP 9.17 1 4 0 1.4552 1 4 0
JSMN 7.43 1 71 0 260.30 1 64 1
Brotli 1634.13 248 2502 0 * * * *
YAML 4360.06 82 834 0 19937.77 102 1266 82

OpenSSL 10.29 2 8 0 1106.18 20 109 12

Table 5.4: SpecTacle results for a speculation windows of 15 and 35 instructions using the DefaultTaint-
Policy and running the Validator. Entries marked * represent values that we could not obtain.
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5.5 Gadget Identification

In this subsection, we provide an overview of SpecTacle’s precision and recall values, as well as how

it compares to other state-of-the-art tools. Precision is calculated as TP/(TP + FP ), and recall as

TP/(TP + FN) with TP , FP and FN meaning true positive, false positive, and false negative, respec-

tively. The lack of an annotated testing dataset proved to be a real challenge to the accurate evaluation

of SpecTacle.

FastSpec [19] uses as ground truth the conditional branches flagged as vulnerable by SpecFuzz [16]

on some of the benchmarks programs of the Phoronix Test Suite [103], i.e., gadgets flagged by Spec-

Fuzz are deemed as true positives, and all other gadgets detected are deemed false positives. FastSpec

then calculates precision and recall values for the given binaries according to this ground truth. The main

flaw with this approach is that SpecFuzz, due to its flawed gadget modeling, is reported to be prone to

both false positives and false negatives [16, 23].

5.5.1 Dataset

In the SpecTaint paper [23], Qi et al. [23] propose two different approaches: manually verifying identified

gadgets and inserting gadgets manually. Both of these approaches have disadvantages. The former is

prone to human error and is not scalable for large codebases. However, the latter can introduce biases.

SpecTaint [23], Qi et al. [23] uses a vulnerability injection approach based on LAVA [104] that guaran-

tees that injected gadgets can be reached by SpecTaint and are attacker-controlled. However, for tools

like SpecTacle and FastSpec [19] which do not directly test for attacker-controlled data and analyze the

entire binary, Spectre gadget injection can be performed with a more relaxed approach.

Our goal with SpecTacle is to provide a static analysis tool with high recall rates without high costs

to precision compared to other static analysis tools with similar execution times. Table 5.5 illustrates the

scale of the number of gadget candidates flagged by FastSpec with the mentioned threshold of 0.48 [19]

and SpecTacle. These values are too high for manual validation, so we chose five Phoronix Test Suite

benchmark programs to which we injected a total of 10 Spectre-PHT gadgets to enable precision and

recall calculation. Alongside these five programs, a litmus test program is also added containing all of the

15 Kocher [41] Spectre-PHT gadgets and alongside two gadget variants introduced by FastSpec [19]

and a modified version of the v01 gadget from Kocher [41] with floating-point operations, for a total

of 6 functions with Spectre gadgets. Listing 5.1 shows an example of a gadget injected in the mbw

benchmark from the Phoronix Test Suite v10.2.0 [103] (lines 4–7 and 17).
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1 void __attribute__ (( noinline)) leakByteNoinlineFunction(uint8_t k)

2 { temp &= arrayPu [(k)* 512]; }

3 void victim_function_v03(size_t x) {

4 if (x < arrayPr_size)

5 leakByteNoinlineFunction(arrayPr[x]);

6 }

7 ...

8 int main(int argc , char **argv){

9 ...

10
11 while((o=getopt(argc , argv , "haqn:t:b:")) != EOF) {

12 switch(o) {

13 ...

14 case 'n': /* no. loops */

15 nr_loops=strtoul(optarg , (char **)NULL , 10);

16 victim_function_v03(nr_loops);

17 break;

18 ...

Figure 5.1: Spectre-PHT gadget injected from Kocher [41] in the Phoronix Test Suite mbw benchmark
[103].

Binary FastSpec SpecTacle SpecTacle with Validator

#F Time(sec) #F Time(sec) #F Time(sec)

libHTP 6 32.50 1 2.4 1 30.2699
HTTP 1 8.08 1 1.45 1 10.12
JSMN 4 11.86 1 55.24 1 285.90
Brotli 165 3450.66 284 788.23 * *

YAML 34 567.66 93 2307.86 93 15701.86
OpenSSL 3 156.93 29 12.2 4 173.06

Table 5.5: Table comparing the execution time and number of functions with flagged gadgets for Fast-
Spec with a confidence level of 0.48, and SpecTacle using the StrictTaintPolicy for a speculation window
of 35 instructions, with and without the Validator. Entries marked * represent values that we could not
obtain.

5.5.2 Evaluation

Since FastSpec [19] assigns a confidence level to a window of tokens, it is not trivial to obtain a direct

translation between a high confidence level and a code location. Therefore we take the first token in

each window and assign it its corresponding function from the binary. Functions that contain a token

window with a confidence level above a given threshold are considered vulnerable. We then compare

the functions deemed vulnerable by FastSpec with the functions where SpecTacle identified gadgets.

We compared SpecTacle against three FastSpec confidence level thresholds: 0.48 [19], 0.6 and 0.8.

Tol et al. [19] claimed that, in their experiments, all gadgets were detected with a confidence level of

0.48 or less, so we choose this value as the lower bound for comparing our results with FastSpec’s.

Additionally, we used token windows of size 80 and a shift value of 1 for the sliding window, also as

recommended by Tol et al. [19]. To recover function information, we modified the scripts in FastSpec’s

GitHub repository [68] to allow for this recovery without altering the confidence levels given by the original
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scripts. Finally, we run SpecTacle with a speculation window size of 35 instructions for a fair comparison

with FastSpec, since FastSpec assigns a confidence level to a window of 80 tokens. Most instructions

are comprised of 2 or 3 tokens, so we find a 35 instruction window an appropriate value for comparison

with FastSpec’s 80 token windows.

The precision and recall values for the dataset containing the injected gadgets are shown in table 5.7.

We noticed that FastSpec consistently assigns confidence levels above 0.7 to non-program-specific

functions like libc csu init and libc csu fini, which inflates the number of false positives, decreasing

precision.

Table 5.7 shows that SpecTacle manages higher recall values than FastSpec using the DefaultTaint-

Policy, identifying all of the injected gadgets.

Tables 5.6 and 5.5 show the execution times for SpecTacle and FastSpec for the given binaries.

In general, SpecTacle is faster for smaller binaries, with and without running the Validator. For larger

binaries with more density of conditional branches SpecTacle is slower, especially if we run the Validator

module. Unfortunatelly, for the XSBench binary, the Validator crashes with a floating point exception

originated in angr’s [82] internals. We could not find a solution to this issue.

To test the viability of the StrictTaintPolicy, we run SpecTacle with this policy for the same binaries and

speculation windows. The results can be seen in table 5.8. We can conclude that the StrictTaintPolicy is

a viable alternative to the DefaultTaintPolicy if the goal is to reduce the number of false positives at the

cost of a possible reduction in the recall values.

Binary FastSpec SpecTacle DTP SpecTacle DTP Validator

Time(sec) Time(sec) Time(sec)

cachebench 33.48 2.53 5.97
mbw 13.75 1.79 2.14

postmark 38.78 2.96 24.11
t-test 15.58 1.65 2.36
ltimus 11.98 1.45 2.79

XSBench 41.75 5.26 *

Table 5.6: Execution times of FastSpec[19] and SpecTacle for selected Phoronix Test Suite binaries.
SpecTacle was run with a speculation window size of 35 instructions and the DefaultTaintPolicy (DTP).
* means that the specific value could not be obtained

5.6 Case Studies and Extensions

In this section, we discuss our proof of concept for Java Spectre-PHT gadget detection and discuss

how it can be applied to other JIT-compiled languages. After, we look into NetSpectre and AVX-based

gadgets. Finally, we look at a real-world gadget example from Brotli [92].
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Binary FastSpec 0.48 FastSpec 0.6 FastSpec 0.8 SpecTacle

P R P R P R P R

cachebench 0.095 0.6(6) 0 0 0 0 0.50 1.00
mbw 0.20 0.50 0 0 0 0 0.666 1.00

postmark 0.91 0.50 0.2 0.5 0 0 0.182 1.00
t-test 0.1(1) 1.00 0 0 0 0 0.333 1.00
litmus 0.037 0.5 0.06 0.5 0 0 1.00 1.00

XSBench 0.609 0.7(7) 0.5 0.4(4) 0.6 0.16 0.154 1.00

Table 5.7: Comparison between FastSpec’s precision and recall values for confidence levels of 0.48, 0.6
and 0.8, with SpecTacle’s using the DefaultTaintPolicy for a speculation window of 35 instructions and
without the Validator. P and R represent precision and recall respectively.

Binary SpecTacle DefaultTP SpecTacle StrictTP SpecTacle DefaultTP (V)

P R Time(sec) P R Time(sec) P R Time(sec)

cachebench 0.50 1.00 2.53 0.75 1.00 2.53 0.75 1.00 5.97
mbw 0.666 1.00 1.79 0.66 1.00 1.75 0.66 1.00 2.14

postmark 0.182 1.00 2.96 0.1429 0.50 2.97 0.286 1.00 24.11
t-test 0.33 1.00 1.65 0.33 1.00 1.68 0.33 1.00 2.36

litmus 1.00 1.00 1.45 1.00 1.00 1.40 1.00 1.00 2.79
XSBench 0.154 1.00 5.26 0.286 1.00 5.26 * * *

Table 5.8: Comparison of the precision and recall values, alongside execution time of the DefaultTaint-
Policy and the StrictTaintPolicy without the Validator, and the DefaultTaintPolicy with the Validator (V)
in the last column. Results obtained with a speculation window of 35 instructions. P and R represent
precision and recall, respectively. * means that it was not possible to obtain a result.

5.6.1 Java Example

To test our Java Spectre-PHT gadget detection proof of concept, we used a simple Victim.java class

shown in listing 5.1 where parts of the main function were removed for simplicity. Our goal is then to

detect the gadget inside the specFunction that can be seen in lines 10 through 14. First, we need to

compile this Java class. For this experiment, we used OpenJDK 11 [105]. We can compile our Java

class using javac: javac Victim.java. Compilation outputs a Victim.class file, which will be used in

the following stages of analysis.

Given a .class file we want to analyze, we can then proceed as follows:

1. Execute the jparse.py python script that implements Algorithm 1 described in Section 4.2.1. This

script will extract the methods from the .class file, disassemble and process them, and finally add

them to an assembly template that can be compiled to an executable. One executable is generated

for each method in the .class file.

2. Given this executable, we can then give it to SpecTacle for analysis. Using the code example in

listing 5.1, SpecTacle was able to detect the gadget in the specFunction method.

This approach is limited because it cannot explore paths that run through different methods not
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located in the compiled binary. A better native code recovery method is left as future work, but this proof-

of-concept demonstrates it is possible to detect Spectre gadgets in JITed Java code. Using this method,

we argue that it is also possible to analyze other languages that offer runtimes with JIT-compilation, like

C#, JavaScript running on the V8 engine, or any others that allow for recovery of the JIT-compiled code.

Analysis of JIT-compiled code is especially relevant due to recent discoveries in Spectre exploitation of

browsers through JavaScript as reported by Agarwal et al. [49] in Spook.js [49], especially given the

increasing popularity of JIT-compiled languages like JavaScript.

1 import java.io. *;

2 import java.util.Random;

3

4 public class Victim {

5 static int len = 1;

6 static byte arrayPr [] = new byte [256+ len];

7 static byte arrayPu [] = new byte [(256+1) * 4096];

8

9 static void specFunction(long x) {

10 if (x < arrayPu [256 * 4096]) {

11 tmp = tmp & arrayPu[arrayPr [(( int)x)] * 4096];

12 }

13 }

14

15 public static void main(String [] args) throws Exception {

16 ...

17 while (true){

18 for(int offset= 0; offset < len; offset ++){

19 // calculate x

20 ...

21 specFunction(x);

22

23 }

24 }

25 }

26 }

Listing 5.1: Java Victim class used to test SpecTacle’s Java gadget detection POC

5.6.2 AVX-based NetSpectre Example

For evaluating our NetSpectreAnalysis, in particular gadgets using the AVX-based side channel, we

added the gadgets shown in fig. 5.2 to our litmus test file for verification. These gadgets were taken

from the NetSpectre [46] paper. The gadget present in the victim function netspectre avx function uses

a VPAND 256-bit instruction [33] which is an AVX2 instruction and so utilizes the AVX2 unit, as required

64



1 void victim_function_netspectre(size_t x, uint8_t k){

2 if (x < arrayPr_size)

3 if(arrayPr[x] > k)

4 flag = 1;

5 }

6
7 void victim_function_netspectre_avx(size_t x, uint8_t k){

8 if (x < arrayPr_size)

9 if(arrayPr[x] > k)

10 b = _mm256_and_si256(a, b);

11 }

Figure 5.2: NetSpectre gadgets [46] added to the litmus test and used for SpecTacle’s NetSpectre
gadget detection proof-of-concept.

to encode data in the covert channel as explored in Section 2.5.3.

Running SpecTacle on the litmus test using the NetSpectreAnalysis correctly detects both gadgets

in functions victim function netspectre and victim function netspectre avx, labeling the gadget using the

AVX2-based covert channel as such. To further test this analysis in real world applications, we analyzed

the simdjson [106] library, a C++ library that leverages SIMD [42] instructions to parse JSON files, but

no gadgets were detected.

5.6.3 Brotli

In their paper, Qi et al. [23] use SpecTaint [23] to detect Spectre gadgets in several open-source li-

braries, one of which being Google’s Brotli [92]. Because of the lack of an annotated testing dataset,

and therefore lack of ground truth, Qi et al. [23] manually checked the gadgets detected by Spec-

Taint [23]. As a result of this manual verification, the gadget shown fig. 5.3 was identified. The

transform idx variable is assumed to be tainted, and the bounds-check in line 13 can be mistrained

to speculatively predict a branch taken, which leads to a call to the BrotliTransformDictionaryWord

function (line 18) with an out-of-bounds transform idx value. In BrotliTransformDictionaryWord, the

BROTLI TRANSFORM PREFIX macro is used in line 26 to index the prefix suffix array with the con-

tents of transforms[transform idx * 3] (lines 2, 4 and 5). Performing these memory accesses with

an out-of-bounds value of transform idx lead to out-of-bounds data relative to the transforms array

being leaked, using the prefix suffix array as a covert channel.
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1
2 #define BROTLI_TRANSFORM_PREFIX_ID(T, I) ((T)->transforms [((I) * 3) + 0])

3
4 #define BROTLI_TRANSFORM_PREFIX(T, I) (&(T)->prefix_suffix[ \

5 (T)->prefix_suffix_map[BROTLI_TRANSFORM_PREFIX_ID(T, I)]])

6 ...

7 static BROTLI_INLINE BrotliDecoderErrorCode ProcessCommandsInternal(

8 int safe , BrotliDecoderState* s) {

9 ...

10 if (transform_idx < (int)transforms ->num_transforms) {

11 const uint8_t* word = &words ->data[offset ];

12 int len = i;

13 if (transform_idx == transforms ->cutOffTransforms [0]) {

14 memcpy (&s->ringbuffer[pos], word , (size_t)len);

15 BROTLI_LOG (("[ProcessCommandsInternal] dictionary word: [%.*s]\n",

16 len , word));

17 } else {

18 len = BrotliTransformDictionaryWord (&s->ringbuffer[pos], word , len ,

19 transforms , transform_idx);

20 ...

21 }

22 ...

23 int BrotliTransformDictionaryWord(uint8_t* dst , const uint8_t* word , int

len ,

24 const BrotliTransforms* transforms , int transform_idx) {

25 ...

26 const uint8_t* prefix = BROTLI_TRANSFORM_PREFIX(transforms ,

transform_idx);

27 ...

Figure 5.3: Spectre-PHT gadget found in Brotli by SpecTaint [92] [23]

To test the effectiveness of SpecTacle, we ran our tool with the Brotli binary to verify if this gadget

would be flagged. SpecTacle detects the gadget in fig. 5.3 with a speculation window of 55 instructions

and without the 12 memory load in speculation limit discussed in Section 4.7.1. This result was verified

with both the DefaultTaintPolicy and the StrictTaintPolicy. FastSpec was not able to detect this gadget

with a confidence level of 0.48 or higher.
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Chapter 6

Conclusions

In this work, our main goal was to develop a static analysis tool based on taint analysis that would be

an alternative to state-of-the-art tools by reducing the number of false negatives while keeping execu-

tion times comparatively low. We implemented SpecTacle, a tool that performs static taint analysis on

VEX [76] instructions obtained by angr’s [82] VEX lifter, PyVEX [85], which allows SpecTacle to support

every executable format that can be loaded using CLE, angr’s binary loader. Additionally, SpecTacle can

forward the flagged gadgets to a validation module that checks the gadgets’ feasibility using symbolic

execution, reducing the number of false positives at the cost of execution time. Our tool can detect the

15 gadgets variants proposed by Kocher [41] as well as two other variants proposed by Tol et al. [19].

Variations of these gadgets are also detected.

Furthermore, we evaluate SpecTacle’s efficacy by detecting a Spectre-PHT gadget reported by Qi

et al. [23] in the real-world application Brotli [92]. These points are achieved while producing fewer false

negatives than other state-of-the-art tools with comparatively low execution times. Besides, SpecTacle

can provide detailed information about the detected gadgets like the address of the conditional branch

that triggers speculation and possible memory addresses where the leaking and encoding memory

load operations are performed. This additional information is meant to facilitate the integration with other

tools or other analysis techniques that have proven to be more precise, like dynamic analysis or symbolic

execution [18, 23]. To this effect, SpecTacle’s static analysis can be used to reduce the search space

for more computationally intensive analysis techniques while not discarding actual Spectre gadgets via

false negatives. We have also discussed how these methods can be integrated directly in SpecTacle

through its Validator module.

Additionally, to the best of our knowledge, no other state-of-the-art tool provides support for detect-

ing NetSpectre AVX-based side-channel gadgets [25]. Therefore, we successfully provide a proof-of-

concept analysis that is able to detect sample gadgets from Schwarz et al. [25].

Finally, to the best of our knowledge, only dynamic approaches have been applied to the detection

of Spectre-PHT gadgets in JIT-compiled languages [21, 22]. In this work, we propose a static analysis

approach to detect Spectre gadgets in JIT-compiled code and prove its efficacy with a proof-of-concept

that successfully detects a Spectre-PHT gadget in a Java program.
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Even though this work is focused on Spectre-PHT gadget detection, SpecTacle can be leveraged

to perform arbitrary analyses on binaries using VEX and provides a flexible static taint analysis engine.

This way SpecTacle is not only a Spectre gadget detection tool but a flexible program analysis tool.

6.1 Future Work

Two of the main drawbacks of our approach to Spectre gadget detection are path explosion and low

precision. To combat these two issues, we could improve our explorer for Spectre-PHT by discarding

conditional branches that do not perform bound-checks. In addition, we could provide a closer integration

with angr [82] and leverage its control-flow-graph extraction tools to extract more accurate control flow

graphs and obtain more information about the conditional branches before exploring them needlessly.

Another approach to increasing precision would be to implement more accurate taint policies to avoid

over-tainting.

Our Validator module does not provide significant value due to its high execution times. One way

to decrease execution time would be to allow gadget validation to be performed in parallel. Also, a

deeper analysis could be performed since we are already paying the overhead of symbolic execution

through path constraint solving. For example, checking for Speculative-Non-Interference or speculative

constant-time [17, 18] semantics, which are shown to be effective in detecting Spectre gadgets with

high precision, so this analysis could be performed to validate gadgets flagged by SpecTacle’s static

analysis. Additionally, dynamic approaches that use hardware performance counters [21, 22] could be

used to further validate flagged gadgets by ensuring that speculative execution can occur.

During testing, we noticed that a significant amount of redundant computation was performed. It

is possible to decrease execution times by implementing state memoization. For example, we could

save Executor and Taint Policy state for each trace fragment, so we do not compute the same taint

propagation and instruction simulation twice. This technique has the potential to decrease execution

time but at the cost of memory requirements.

Finally, further work can be done in supporting JITed languages. Support for more languages, like

JavaScript (V8) or C#, needs to be provided. In addition, better control-flow extraction and more accurate

memory layout mapping techniques need to be developed to more accurately analyze JIT-compiled code.

Also, angr [82] provides experimental support for Java symbolic execution, which could be explored and

improved upon to support the detection of Spectre gadgets in Java code.
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